
Data Appendix for Measuring political media
slant using textual data: evidence from

Singapore∗

Shen Yan Shun (Lucas) †

March 9, 2019

1 Downloading and parsing of textual data

The sample period is from 1 January 2005 to 31 December 2016. Newspaper articles
come from the Factiva electronic archive. I query Factiva by names of politicians
who served in parliament during the sample period, for the source of The Straits
Times, in the periods defined above. The query results are downloaded in plain text
format, with individual articles automatically separated using a custom written
script that obtains the content of the newspaper article itself, and article metadata
(article title, date of publication, authors, newspaper section, and the length of the
article by word count). The query results from Factiva yield 112,273 newspaper
articles, of which 62,132 articles are unique as identified by the title-date tuple.

Transcripts of politicians’ speeches in parliament are downloaded from the
publicly available and official repository. I write a script to automatically extract
speaker-speech chunks by parsing the HTML tags.

∗Draft of the main paper is available at https://lsys.github.io/media-paper/paper.pdf
†Division of Economics, School of Social Sciences, Nanyang Technological University. Email:

lucas@lucasshen

1

https://lsys.github.io/media-paper/paper.pdf
mailto:lucas@lucasshen

2 Classifying newspaper articles

2.1 Selecting the best classifier

This section details, quite considerably, the use of supervised machine learning
classifiers (mainly the randomForest) to classify each of the 62,132 unique newspaper
articles as positive or negative; positive if they contain at least one quote from
parliament; negative if they do not contain any quote from parliament. A supervised
learning algorithm learns from a development set where each observation has a
pre-existing label (positive or negative) and a vector of features to learn from.1

The initial development set is 1,419 arbitrarily chosen newspaper articles over
the period October 2011 to December 2012. The articles are manually labelled, with
275 articles (19%) labelled as positives while the remaining 1144 articles (81%)
are labelled negatives. Newspaper articles are mainly represented by a vector of
n-grams, with n = (1, 5). These n-grams features are complemented with additional
feature engineering using words in the article title such as "parliament" and "debate",
as well as the number of quotes in the text using automated text processing.

We choose the period October 2011 to December 2012 since this period is the
first few months of the 12th parliament where the opposition gained a significant
number of seats as either elected members of parliament, or as non-constituency
members of parliament.

Using this initial development set, I put to test the classification performance
of six well-known and commonly used supervised classifiers: (1) naive bayes, (2)
decision tree, (3) support vector machine, (4) logit, (5) bagged decision trees, and (6)
random forest.2 With the exception of the naive bayes, there are four variants of
each classifier depending on how class imbalance—the fact that only 275 of 1,419
newspaper articles in the development set are positives—is addressed. The four
variants are: (1) no action taken to address class imbalance, (2) using sample class
weights, (3) using SMOTE, and (4) using both sample class weights and SMOTE.
Naive bayes has only variants (1) and (3) since it uses the development set’s prior
class probabilities innately.

SMOTE is the synthetic minority oversampling technique to address class im-
balances, it augments the existing number of minority class by creating synthetic
observations (rather than oversampling with replacement). This technique works

1 Features in the machine learning nomenclature is akin to right-hand-side variables in economet-
rics.

2 Varian (2014) provides descriptions of some of these common classifiers.

2

by selecting a minority class observation a with feature representation xa, randomly
choosing 1 out of the k-nearest-neighbours of a in the feature space, say, observation
b. The feature vector of the newly created observation c is then xc = xa + r · (xa−xb),
where r is a random number between 0 and 1. Oversampling in this way is repeated
until the development sample is made up of equal shares of minority and majority
class observations (Chawla et al., 2002).3

Almost all the classifiers require some model parameters which are not (directly)
learned from estimation. Decision trees, for example, can have the maximum tree
depth and minimum tree node sample split set before the estimation. We take an
agnostic approach to what the best model parameters should be by conducting grid-
searches over pre-defined values of model parameters for the best cross-validation
scores.

Cross-validation scores for a classifier are from stratified k-folds cross-validation
of the development set, which works as follows. The development set is first randomly
partitioned into k equally sized and equally represented subsets. In the first of
k rounds, the classifier is trained on the first (k − 1) subsets and evaluated for
classification performance on the left-out subset. This is repeated k times, with
the left-out set rotating to the next subset and the training set composed of the
other (k − 1) subsets, until all k subsets have been used as the left-out set. The
final out-of-sample performance scores are then averaged over these k-folds. In all
implementations, k = 5 unless otherwise mentioned; the choice is arbitrary.4 5

The out-of-sample classification performance of the optimally-tuned classifiers
are shown in Table 1, along with the optimally tuned model parameters in the last
column (where applicable). Column (1) indicates whether class-weights are used to
address class imbalance. Column (2) indicates whether SMOTE is used to address
class imbalance. For SMOTE variants, the optimal tuning for the non-SMOTE
counterpart is carried over. For instance, the class-weighted decision tree in row (3)
has its optimally-tuned maximum depth of 4 and a minimum sample split of 300
carried over to the class-weighted decision tree with SMOTE in row (5).6

3 All implementations of grid-searches and estimations use the scikit-learn library (Pedregosa
et al., 2012); all implementations of SMOTE use the imblearn package (Lemaitre et al., 2017). Both
are open-source and actively maintained.

4 For SMOTE, creation of synthetic observations is done within the k-folds split, within each (k−1)
subsets. This avoids the accidental contamination of training set information from the validation
set, which leads to overstated out-of-sample prediction performance.

5 In Figure 1, the learning curves are very similar for cross-validation scores based on k = 5 and
for k = 10.

6 Ideally, the SMOTE variants should have their own grid-searches for the SMOTE variant-specific
optimal model parameters, where time permits.

3

Figure 1. Random forest learning curves

For the five score columns (columns (3)-(7)), the two best scores for each column
is highlighted in bold. In column (3), the random forest with class weights and the
bagged decision trees without addressing class imbalance have the best accuracy
scores with 89% accuracy, higher than the baseline score of 81% from a dummy
classifier which classifies all observations as ’no’ (the majority class). In column
(4), the decision tree with class-weights and support vector machine (SVM) with
class-weights do best in terms of recall—how many of the newspaper articles that
contains quote(s) from parliament are correctly classified as such (a dummy classier
which classifies as ’yes’ for all observations achieves a 100% recall score). In column
(5), bagged decision trees without addressing class imbalance and the random forest
without addressing class imbalance do best in terms of precision—how many of the
articles predicted as containing quote(s) from parliament really do contain quote(s)
from parliament. In column (7), the two random forest variants without SMOTE do
best in terms of the area under the Receiver operating characteristic (ROC) curve.
The practical emphases are on recall and precision. Recall ultimately determines
how big the sample data will be. Precision determines how much time is saved
in the dataset construction pipeline by avoiding false positive classifications. The
final metric I consider is the F-score in column (6), a handy metric which takes
the (harmonic) mean of the recall rate and precision rate, which is topped by the

4

Table 1. Classification performance
W S Accuracy Recall Precision F-score ROC AUC Optimal model parameters
(1) (2) (3) (4) (5) (6) (7) (8)

NB 0.72 ±0.08 0.85 ±0.10 0.39 ±0.08 0.54 ±0.09 0.81 ±0.10 —
NB X 0.68 ±0.07 0.84 ±0.11 0.36 ±0.07 0.50 ±0.08 0.74 ±0.08 —
DT 0.86 ±0.04 0.63 ±0.48 0.70 ±0.26 0.62 ±0.24 0.88 ±0.11 max depth=4, min split=150
DT X 0.79 ±0.09 0.94 ±0.07 0.49 ±0.12 0.64 ±0.10 0.88 ±0.07 max depth=4, min split=300
DT X 0.81 ±0.09 0.64 ±0.60 0.51 ±0.17 0.52 ±0.41 0.75 ±0.23 max depth=4, min split=150
DT X X 0.79 ±0.08 0.89 ±0.14 0.49 ±0.11 0.63 ±0.08 0.83 ±0.05 max depth=4, min split=300
SVM 0.77 ±0.03 0.10 ±0.05 0.28 ±0.19 0.15 ±0.08 0.59 ±0.05 C=0.05
SVM X 0.19 ±0.00 1.00 ±0.00 0.19 ±0.00 0.32 ±0.00 0.77 ±0.10 C=0.05
SVM X 0.57 ±0.32 0.32 ±0.35 0.18 ±0.10 0.22 ±0.10 0.47 ±0.10 C=0.05
SVM X X 0.44 ±0.60 0.60 ±0.98 0.12 ±0.19 0.19 ±0.32 0.50 ±0.00 C=0.05
Logit 0.86 ±0.05 0.50 ±0.42 0.67 ±0.11 0.55 ±0.34 0.90 ±0.05 C=0.1, intercept=T, penalty=l1
Logit X 0.83 ±0.03 0.73 ±0.46 0.56 ±0.07 0.61 ±0.21 0.85 ±0.16 C=0.8, intercept=F, panalty=l1
Logit X 0.84 ±0.10 0.56 ±0.68 0.58 ±0.26 0.51 ±0.49 0.73 ±0.29 C=0.1, intercept=T, penalty=l1
Logit X X 0.82 ±0.04 0.68 ±0.59 0.53 ±0.12 0.56 ±0.34 0.77 ±0.23 C=0.8, intercept=F, panalty=l1
Bag-DT 0.89 ±0.06 0.64 ±0.45 0.79 ±0.17 0.68 ±0.29 0.93 ±0.05 —
Bag-DT X 0.88 ±0.04 0.63 ±0.34 0.73 ±0.17 0.66 ±0.19 0.93 ±0.04 —
Bag-DT X 0.87 ±0.06 0.81 ±0.31 0.65 ±0.21 0.70 ±0.12 0.84 ±0.12 —
Bag-DT X X 0.87 ±0.07 0.80 ±0.33 0.66 ±0.21 0.70 ±0.14 0.84 ±0.13 —
RF 0.86 ±0.01 0.43 ±0.12 0.77 ±0.18 0.54 ±0.08 0.94 ±0.02 min split=5, max features=sqrt
RF X 0.89 ±0.08 0.83 ±0.12 0.70 ±0.25 0.75 ±0.14 0.93 ±0.03 min split=95, max features=sqrt
RF X 0.88 ±0.10 0.83 ±0.12 0.69 ±0.27 0.74 ±0.16 0.86 ±0.08 min split=5, max features=sqrt
RF X X 0.87 ±0.10 0.85 ±0.10 0.65 ±0.24 0.73 ±0.15 0.86 ±0.07 min split=95, max features=sqrt

a) All scores are computed from stratified 5-fold cross validations from the best performing model from the gridsearches,
which optimises for recall.
b ±values are the 95% confidence intervals computed as 2 times of the standard deviation from the cross-validation
scores.
c)Column 2 indicates whether (class) weights are used to address class imbalances. Column 3 indicates whether SMOTE
(synthetic minority oversampling technique) is used to address class imbalances. These are computed with the imblearn
package (Lemaitre et al., 2017). Where applicable, model parameters are carried over from the non-SMOTE counter-
parts.
d) F-score in column 7 is the harmonic mean of the recall and precision scores. ROC AUC in column 8 is the area under
the Receiver operating curve score.
e) The last column indicates the tuned model parameters and their optimal values, where applicable.

random forest with class weights and the random forest with SMOTE.

The random forest with class weights is the best performing classifier by accuracy,
the mean of recall and precision, and the area under the ROC curve, and I use it to
classify the rest of the newspaper articles in the sample. A brief description of the
random forest is as follows. The random forest classifier constructs a bag of decision
trees, where each tree is trained on a bootstrap sample from the development set.
In addition, each tree node is split based on the best split from a bootstrapped set of
features (as opposed to a split based on the best split among all features). The best
split is usually determined by the information gain or the Gini impurity, which are
measures of misclassification from a split. This process of bootstrapping over both

5

observations and features is repeated until we arrive at a collection of trees—the
random forest. The individual trees in the random forest then vote for the most
popular class (Ho, 1995; Breiman, 2001; Loh, 2014).

Injecting randomness into the construction of decision trees prevents overfitting
and improves out-of-sample prediction performance by minimising the correlation
between trees while maintaining their individual predictive performance (Breiman,
2001). In an empirical comparison of several supervised learning algorithms in
out-of-sample predictions, Caruana and Niculescu-Mizil (2006) find that random
forests almost always place first (39% of the times) or second (53% of the times),
with only a 0.1% chance of ranking below third place. This is consistent with the
findings in Table 1. In addition to being a well-performing classifier, it turns out
that the random forest classifier is computationally cheap, with little out of the box
tuning of model parameters needed to achieve reasonably good performance.

Figure 1 shows the random forest learning curves for recall, precision, and F-score,
where the horizontal axes are the size of the training set, and the vertical axes are the
scores from stratified k-fold cross-validation. The random forest classifier is generally
well-behaved in the sense that the gap in prediction performance between training
and cross-validation scores reduces as the training sample increases. The curves also
indicate some scope for better classification performance with additional training
observations, which the random forest can get from relearning new classifications.
The process of classifying the sample work sets by year and adding the newly labelled
newspaper articles into the development set incrementally is described below.

2.2 Classification workflow

Panel A and panel B of Table 2 summarises the classification by year. Column (2)
of Panel A describes the initial development set, with a total of 1419 newspaper
articles where 275 are positives and 1144 are negatives. The classification takes
places in stages, by year, with new classifications augmenting the existing classifier
as follows.

First, the initial development set trains the initial random forest, which classifies
the remaining (non-initial development set) 4,912 newspaper articles in 2012, where
471 are predicted positives (column (2) of panel A). The 471 predicted positives
are then examined, semi-automatically, to extract quotes from parliament.7 This
process of extracting quotes determines for sure, that of the 471 predicted positives,

7 Extraction of quotes is described in further detail below.

6

157 are true positives and 314 are false positives. The existing development set
is then augmented with the 471 predicted positives, now with true positive/true
negative (yes/no) labels, to yield a development set of 1890 articles of 432 positives
and 1458 negatives (column (3) of panel A). This newly augmented development set
in 2012 is used to retrain the random forest, which then classifies the work set in
2013 (column (3) of panel B). The predicted positives in 2013 are used to augment
the development set for the year 2014, and so on. This repeats until the year 2016
(the end of the sample period), jumps back to 2011, then moves backwards until the
year 2005 (the start of the sample period). This order of workflow is reflected in
Table 2.

As done with the initial random forests from Table 1, all subsequent implemen-
tations use n = 1000 decision trees, with Gini impurity criterion used to measure
split quality at tree nodes. While a sufficiently large number of trees is sensible to
obtain convergence in the prediction errors (Breiman, 2001), and too large a number
may incur unnecessary computing costs (partly also because of convergence), the
choice of a 1000 trees is mostly arbitrary.8

We briefly discuss here an alternative to using machine learning methods to
classify newspaper articles—the ’hard-coding’ of rules. Hard-coding requires a
pre-existing set of rules out of which a newspaper article can be classified as one
that contains quote(s) from parliament, or not. Examples of rules are to classify as
yes if the article contains the word ’parliament’, if the article contains the words
’parliament’ and ’debate’, or if the article contains the word ’parliament’ n times
(and classify as no otherwise).

Machine learning methods is superior to hard-coding for two related reasons.
First, since no clear set of hard rules exist, one would have to introspect about what
characterises an article that contains quote(s) from parliament. This may induce
bias in the eventual sample if the manually curated rules are more sensitive towards
articles where the coverage favours the ruling party more than average, or vice
versa, where the coverage favours the opposition more than average. Outsourcing of
this introspection to machine learning eliminates any potential researcher-induced
bias in classification, and in the eventual sample. If anything, it makes more sense
if the hard-coded rules are derived from a transparent classifier such as the decision
tree (transparent because rules are not obvious in a black-box type of classifier such
as a neural network).

8 The random forest parameters of maximum features and minimum sample splits are retuned
with each augmented development set, with little change in the optimal hyperparameters.

7

Table 2. Classification of sample news articles by year
2012 2013 2014 2015 2016 2011 2010 2009 2008 2007 2006 2005

Panel A. Development Sets
Total 1419 1890 2311 2736 3138 3675 3881 4201 4385 4590 5075 5422

Positives 275 432 715 1060 1379 1843 2004 2257 2433 2617 2989 3224
Negatives 1144 1458 1596 1676 1759 1832 1877 1944 1952 1973 2086 2198

Panel B. Work sets
Total 4912 4942 4499 7221 7087 4667 4367 4582 4394 4722 5198 4111

Pred pos 471 421 425 402 537 206 320 284 205 485 347 384
Pred neg 4441 4521 4074 6819 6550 4461 4047 4398 4189 4237 4851 3727
True pos 157 283 345 319 464 161 253 176 184 372 235 284
False pos 314 138 80 83 73 45 67 8 21 113 112 100
Precision 0.33 0.67 0.81 0.79 0.86 0.78 0.79 0.95 0.9 0.77 0.68 0.74

Panel C. Top 15 features
1 parliament# grc parliament parliament

yesterday parliament# parliament
yesterday grc parliament

yesterday grc parliament
yesterday

parliament
yesterday

parliament
yesterday

2 grc parliament
yesterday

parliament
yesterday parliament# grc grc parliament# grc parliament

yesterday said said said

3 parliament
yesterday said grc yesterday parliament parliament parliament parliament parliament parliament parliament parliament

4 mps mps said grc said said said parliament# said parliament# asked yesterday
5 debate parliament# mps said yesterday debate debate said parliament# yesterday yesterday grc asked
6 government government yesterday mps grc asked grc asked grc asked yesterday yesterday asked parliament# mps
7 mp yesterday government government debate yesterday yesterday grc asked grc asked mps mps parliament#
8 asked debate debate# grc asked asked asked asked debate debate grc asked responding asked
9 mr responding asked asked mps added minister mps mps debate grc asked responding

10 aljunied grc asked debate debate added minister added asked asked minister debate debate
11 minister grc asked grc asked mr minister responding responding responding responding responding minister mr
12 constituency mp mp replying debate# mr mps mps minister mr added added minister
13 approach mr added replying replying debate# replying added added mr mr added
14 chua chu kang grc debate# minister minister debate# told parliament mr told parliament minister replying told parliament nominated mp
15 house event responding added government director executive mr told parliament told parliament nominated mp told parliament

a) Classification starts in the year 2012, going forwards to 2016, jumps back to 2011, then backwards til 2005.
b) The # symbol indicates those words that occur in the title of the newspaper article.

8

Second, manual introspection is unlikely to be perfect nor complete. Rather than
introspect, we turn the classification problem into a purely empirical one by letting
the data tell us what works, as in Mullainathan and Spiess (2017). Pang et al. (2002)
provide a concrete case using movie reviews, demonstrating that machine learning
definitively outperforms human introspection. Some evidence of this is also present
in the top features shown in panel C of Table 2. Some features agree with human
intuition on what the useful phrases would be, such as ’parliament’ and ’debate’.
Phrases such as ’parliament yesterday’, ’yesterday’, ’responding’, and ’replying’ are
obvious (if at all) only on hindsight.9 10

3 Extracting quotes from classified articles

Once the random forest classifies articles in a work set, the predicted positives are
examined to ascertain whether they do contain quote(s) from parliament, and if
they do, extract the quote(s).

I write a custom script for a simple graphic user interface (GUI) to facilitate
the extraction of quotes. The GUI does a handful of tasks automatically: (i) cycles
through the predicted positive newspaper articles; (ii) searches for quotes in the
current displayed article and cycles through the quotes; (iii) cycles through the
downloaded parliament transcripts; (iv) searches for the top n matches in the
current transcript for the current quote and cycles through these n matches; and
finally (v) stores the quote and other relevant metadata such as the dates and full
speech. Quotes are extracted as strings i) inside single inverted commas, ii) inside
double inverted commas, and iii) after speech colons.11

This extraction procedure is partially automated with manual supervision com-
ing in mainly between task (iv) and task (v). I look through the top n matches and
stores the match that looks most likely to be the source of the quote in the newspaper
article.

The partially automated quote extraction relies on the use of standard edit
distance measures from the NLP literature (e.g. Levenshtein distance or Ratcliff-

9 The two reasons are related because incomplete or imperfect introspection itself may give rise to
bias.

10 I also tried a naive classification which classifies as yes if a news article contains "parliament*",
and no otherwise. The naive classifier has an accuracy score of 0.78 (compared to 0.89 from the
random forest), a better recall score of 0.93 (compared to 0.83), a precision score of 0.47 (compared to
0.70), and a F-score of 0.66 (compared to 0.93). Overall, it clearly underperforms relatively to the
random forest classifier.

11 Screenshots of the GUI can be seen in Figure 2.

9

(a) GUI example without text

(b) GUI example with text

Figure 2. Graphics user interface with quote matching and extraction

10

Obershelp pattern recognition algorithm). Edit distance is a solution to the problem
of string similarity. For example, the Levenshtein distance between intention and
execution is five, because five operations are needed to convert intention to extention:
(1) delete i, (2) substitute n by e, (3) substitute t by x, (4) insert u (between n and t),
and finally (5) substitute n by c. This minimum edit distance provides a measure
of string similarity or probability alignment between two sequences (Jurafsky and
Martin, 2000). The edit distance is implemented using built-in methods in the
Python Standard Library.

Let the base string similarity be f . Generally, for a given quote q and a set of
speeches S = {s1, . . . , sL}, the matched speech is speech s∗ ∈ S which satisfies:

s∗ = arg max
s`

{
f(q, s`)

∣∣∣ s` ∈ {s1, . . . , sL}}.
4 Modelling topic distributions

This section details the modelling of the topic distribution for the textual data. The
goal here is to attribute to speeches and newspaper articles a topical structure.
More concretely, we want to be able to say something about whether a speech is
about, say, crime or climate change. The reason this is potentially fruitful is because
of the possibility that the media covers politicians differently depending on the
area of discussion. For instance, it may well be the case that the ruling party
politicians are covered more than opposition politicians in areas such as healthcare
(as in Petrocik (1996); Puglisi (2011)), and a comparison between ruling party and
opposition politicians without controlling for topics may result in an overstatement
of coverage of ruling party politicians simply because the ruling party tend to talk
more about certain political topics of interest to journalists (and more generally to
the public).

4.1 Latent Dirichlet Allocation

We use the Latent Dirichlet Allocation (LDA) to model topic distributions (Blei
et al., 2003). As a quick establishment of nomenclature, a document is some textual
data made up of a collection of words. In this study, the document unit is either
a newspaper article, or a parliamentary speech.12 A corpus is the collection of

12 We could have also take an entire parliamentary sitting transcript, which is made up of several
speeches, as the document. This however, makes less ontological sense, since the unit of observation
is a speech and not an entire sitting.

11

documents. We have two corpora here: the sample of 3,425 news article corpus, and
the sample of 5,227 parliamentary speech corpus. An LDA model is trained on each
corpus, fromwhich the topic distributions of individual documents can be retrieved.13

A topic is understood here as a collection of words that occur frequently together.
Here are three examples of topics automatically learned from the parliamentary
speeches:14

1. 〈cpf, retirement, minimum_sum, saving, cpf_saving〉

2. 〈police, home_team, officer, crime, inquiry〉

3. 〈premium, medishield_life, medishield, insurance, insurer〉

LDA models documents as outputs of a simple generative process: topics are
characterised by their probabilistic association to words, and documents in turn
are characterised by their probabilistic association to topics. To generate a new
document given aK×1 topic distribution θd, each word placement in the document is
first assigned a topic, according to θd, say topic j, and then assigned a word randomly
given the topic-specific word distribution for topic j. Documents are multinomial
distributions over topics, and topics are multinomial distributions over words in
the vocabulary. In reality, documents are not really generated this way, but the
generative process as described allows us to reverse the process using bayesian
reasoning: to infer the topic distribution of documents given the observed words in
the document.

More formally, for K topics, D documents, and N terms, Φ is the N ×K topic-
specific term distribution, where Φn,k is the probability of word n appearing in topic
k. Θ is theK×D document-specific topic distribution, where Θk,d is the probabilistic
association of document d to topic k. Z is theN×D topic-to-word assignment matrix,
where.Zd,n is the is the probabilistic assignment of topic k to word placement n. W
is the N ×D document-term matrix, whereWd,n is the observed probability of word
n appearing in document d. The generative process described above corresponds
to the following joint probability distribution of both the observed and unobserved

13 We could also use the trained model to get the topic distributions of unseen documents, but this
is beyond the ambit of this study.

14 These are taken from the LDA model trained on the parliamentary speech corpus on K = 92
topics. The words/phrases in the angular brackets are the top 5 words for topic 4, 18, and 31, with the
relevance metric at 0.5. The phrases are words joint by ’_’, these are word that co-occur frequently and
identified as such before the model is trained. We describe this in more detail below. The visualisation
of the LDA results can be viewed on https://lsys.github.io/media-lda/ldavis.html.

12

https://lsys.github.io/media-lda/ldavis.html

variables:

(1) P (Φ,Z,Θ,W |α) =
K∏
k=1

P (φk)
D∏

d=1

P (θd |α)
N∏

n=1

P (zd,n |θd)P (wd,n |φk, zd,n),

where α is the Dirichlet parameter for the document topic distributions. Going
from left to right (from topics to document to terms) we first take the joint probability
of φk, the distribution over terms for topic k, then take the joint probability over topic
distributions for documents, and finally take the joint probability over words. zd,n is
the topic-assignment for the nth word in the dth document, which is symmetrical to
the dth document’s topic distribution. 15

What we really want here is the document-specific topic distribution given the
observed documents (and words), which can be recovered from the posterior:16

(2) P (Φ,Z,Θ |W , α) =
P (Φ,Z,Θ,W |α)

P (W)
.

Latent in the LDA refers to the problem of inferring the latent or unobserv-
able topic distribution Θ of a corpus given the observation of the documents and
words. Dirichlet in the LDA refers to the Dirichlet distribution over the K-topics
multinomial distribution.

The LDA does use the bag-of-words assumption in the sense that documents are
treated as a collection of words without regard for order or syntax. This means that
a document generated as described by the LDA above is unlikely to be grammatical.
This is not an issue since we are only looking at inferring the topic structure rather
than generating text.17

One major advantage of using LDA to model the topic distribution of the corpus
of newspaper articles and parliamentary speeches is that the LDA is unsupervised;
no human input is needed to impose a topic structure to the corpus before or after

15 For a topic j, the probability that the nth word in document d is assigned to topic j is P (zd,n =
j |θd) = θd,j . The probability of the nth word in document d given this topic assignment is then
P (wd,n | zd,n = j,Φ) = Φwd,n,j

16 The denominator however is computationally intractable given the vast possibilities of the hidden
topic structure. Instead, the posterior is estimated using techniques such as Gibbs sampling, a
Markov Chain Monte Carlo technique, which works on the lower dimension of Z, the topic-to-word
assignments. Φ and Θ are then estimated indirectly from the posterior estimate of Z. Blei (2012)
furnishes more details on this.

17 Griffiths et al. (2004) provides details on the extension of topic models to account for syntax.

13

training. In addition to saving resources on the manual classification of each
document’s topic(s), the unsupervised automation conveniently avoids research-
induced bias from the imposition of a corpus topic structure.18 19

Another advantage of this generative model is how there is no notion of mutual
exclusivity. Association of a document to topic j does not preclude association to
some other topic i. There is similarly no restriction of a word to any one topic.
Instead, words have different probabilistic associations to different topics. This
allows for polysemy, where words can have different meanings in different contexts;
a common example being (financial) bank in a Finance topic vs. (river) bank in a
Fishing topic.20

More specifically for the econometric analyses in mind, a topic distribution for
a newspaper article may capture variation in news reporting that is not already
captured by the section of a newspaper article.

4.2 Choosing optimal number of topics

The main disadvantage using LDA lies in the choice of K, the number of topics to
model. This is chosen by the user before the model is trained, and assumed fixed
throughout. A model trained using an arbitrarily chosen K might have too many
topics so that many of the K topics contain words with little meaning or coherence,
or have too few topics to properly capture the topic granularity of a corpus.21

The traditional way to evaluate topic models is to use predictive modelling
metrics: such as perplexity and held-out likelihood. However, Chang et al. (2009)
show that the traditional measures do not correlate well with how humans evaluate
the topics from a model. To measure coherence of topics, they develop a word
intrusion task, where human participants are presented with six words in a topic.
Five of these words are the top five words in the topic (by probability of occurrence).
The sixth word, the intruder word, is a randomly chosen low probability word in the
same topic but with high probability in some other topic. These six words are then
shuffled and presented to the subject. The more coherent a topic is, the easier it

18 Human annotation is needed after training to label the topic clusters identified by LDA, since
LDA merely looks for clusters of topics and do not name them. In fact for this study, no human
annotation is needed at all since all we require are (probabilistic) measures of document’s topics.

19 Avoiding researcher-induced biases by using the unsupervised LDA is similar to the case of using
a machine learning algorithm vs. hand-curating rules to classify newspaper articles.

20 Pritchard et al. (2000) develop what is essential the same model for the study of population
genetics. The no mutual exclusivity notion meaningfully models individuals as coming from multiple
ethnic origins.

21 For example, should primary/secondary education be in the same topic as tertiary education? A
K that is too low may have these two humanly distinguishable topics clustered as one.

14

(a) Parliamentary speeches (b) Newspaper articles

Figure 3. (Normalised) Coherence scores

should be for the subject to identify the intruder word. Chang et al. (2009) find that
the traditional metrics of perplexity and held-out likelihood are in fact, negatively
correlated with human intuitions of topic coherence measured by word intrusion.

Instead of using the traditional perplexity score or using human evaluations, I
automate the evaluation of topic coherence and topic model quality using coherence
scores recently found to correlate well with human intuition as follows. We train
LDA models for the two corpora (one for speeches and one for articles) for topic
numbers in steps of 2, starting from 2 topics, up to a 100 over topics. Each iteration
computes coherence scores using the top n = 10 words. The topics can then be
ranked according to the corresponding coherence scores.

Figure 3 plots the (normalised) coherence scores against the number of topics
K. The coherence score c_uci is based on the pointwise mutual information (PMI)
between topic words (Newman et al., 2010). Coherence score c_npmi is based on
the normalised PMI (NPMI) (Lau et al., 2014). NPMI was introduced as a means
of providing better interpretability to the PMI metric, where the NPMI is always
between -1 and 1. For comparison, the PMI goes from 0 to −∞. The NPMI also
reduces PMI’s bias towards words of lower frequency (Bouma, 2009). Coherence
score c_v combines NPMI and the indirect cosine measure (Röder et al., 2015). These
three measures correlate well with human evaluations of topic models (Newman
et al., 2010; Lau et al., 2014; Röder et al., 2015).

Figure 3a shows the normalised coherence scores for the topic models trained
on the parliamentary speeches. For this corpora, there is the convenient result
where all three measures agree on K∗ = 92. The coherence scores bob up and down,
but exhibit a gradual trend upwards as the number of topics increases. We note
however that lower number of topics can achieve coherence scores very similar to

15

the local optimum at K∗ = 92. With an eye on possible robustness checks to varying
K, I train two additional speech LDA models for K = 50 and K = 100 topics.

Figure 3b shows the normalised coherence scores for the model trained on the
newspaper articles. The behaviour of the coherence scores is similar here. The best
topic number K∗, however, is less obvious. To simplify things, I set K∗ = 40 as this
is the smallest number of topics that appear in the five best Ks from the c_npmi
and c_uci. For comparison, K = 42 and K = 44 also appears in the best five Ks for
the three measures. Similarly, with an eye on robustness checks, and keeping in
mind the somewhat arbitrary choice of K, I train two additional article LDA models
for K = 30 and for K = 50 topics and the baseline results survive.22

4.3 Implementation

The implementation of the LDA models uses the gensim library (Řehůřek and Sojka,
2010). Pre-processing of text is done using both gensim and the SpaCy library.
Pre-processing of text before training the LDA model is as follows. The documents
are first cleaned by removing irrelevant information such as corresponding email
addresses in newspaper articles, and time stamps in the speech transcripts. Then
a simple algorithm using NPMI is passed over each corpus to look for phrases
that co-occur together frequently. Each pass connects two individual tokens if the
NPMI exceeds some threshold. These words together usually mean something else
entirely as opposed to when they appear individually. In the example of topics above,
minimum sum, cpf saving, home team, and medishield life are examples of these
identified phrases. Two passes are given over the document to potentially identify
longer phrases such as early childhood education scheme.23 24

Pre-processing of text also involves removing certain words or phrases that are
of certain type using named-entity recognition. Types that are removed are: Person,
Date, Time, Percent, Money, Quantity, Ordinal and Cardinal.25 Stopwords are
also removed, and the remaining words lemmatised, as is customary. Finally, the
Dirichlet parameter is assumed to be symmetric, with α = 1

K
.26

22 Scores are normalised to be between 0 and 1 for comparison. Since I am merely ranking topic
numbers by scores, the monotonic transformation does not destroy any relevant information.

23 The threshold used lies between 0.55 to 0.7.
24 Examples of words that occur together frequently are names, geopolitical entities (e.g. united

nations), locations (e.g. botanical gardens), and phrases such as mean test, early childhood education,
life expectancy, maternity leave, environmental sustainability, and so on.

25 More details on named-entity types can be found at https://spacy.io/usage/linguistic-
features

26 Mechanically, small α values lead to sparse distributions. For topic modelling, a smaller than
unit α value captures the assumption that documents are unlikely to have high associations to

16

https://spacy.io/usage/linguistic-features
https://spacy.io/usage/linguistic-features

5 Additional textual and language measures

This section describes four additional textual and language measures used in the
regression analyses as both media coverage outcomes and as controls of speech
tonality and language proficiency: (i) objectivity of article and speech components,
(ii) polarity of article and speech components, (iii) English grade/readability measure
of speech, and (iv) lexical richness of speech.

Objectivity and polarity of article and speech components. I generate objec-
tivitymeasures (how subjective or objective sounding a text is) and polaritymeasures
(how negative or positive sounding a text is) using the TextBlob API for the pattern
sentiment analyser. The pattern analyser computes objectivity and polarity mea-
sures by using parts of speech tagging (to identify nouns, adjectives, etc.), giving
different scores of objectivity and polarity to different tokens in different parts of
speech. The final scores for a text is the weighted combination of the individual
tokens’ scores.27

The anatomy of a speech can be broken down into three levels: (i) sentence (or
sentences) in a speech, (ii) paragraph (or paragraphs) of a speech, and (iii) the
entire speech. Objectivity and polarity scores are generated for these three speech
components. A distinction can also be made between quotes and the entire sentence
containing the quote. Objectivity and polarity scores are also generated for these
two quote components, giving a total of five measures of objective and polarity.

These 5 measures can be consolidated into a single principal component using
principal component analysis. The results from the principal component analyses
for objectivity and polarity are presented in Table 3 and Table 4. The Kaiser-Meyer-
Olkin (KMO) measures of sampling adequacy for objectivity and polarity are mostly
above 0.7, indicating the five variables have more than sufficient commonality to
warrant the analysis. Both the first principal component of objectivity and polarity
explainmore than 50 per cent of the standardised variation in the linear combination
of the five variables.

English language grade/readability of speeches. One concern with media cov-
erage of politician speeches has to do with how coherent the speeches are and how
comprehensible they are. We use readability and lexical richness to measure how
sophisticated politicians’ speeches are. Readability measures of speeches are gener-
numerous topics.

27 To my knowledge, no large-scale sentiment analyser which is trained on politician speeches
or newspaper corpora is currently available. Documentation on the TextBlob API can be found at
https://textblob.readthedocs.io/en/dev/, while information on the pattern sentiment analyser
can be found at https://www.clips.uantwerpen.be/pages/pattern-en#sentiment.

17

https://textblob.readthedocs.io/en/dev/
https://www.clips.uantwerpen.be/pages/pattern-en#sentiment

Table 3. Principal component analysis for textual objectivity
PC 1 PC 2 PC 3 PC 4 PC 5

Eigenvalue 2.782 1.086 0.54 0.355 0.237
Variance (%) 0.556 0.217 0.108 0.071 0.048
Cumulative variance (%) 0.556 0.773 0.881 0.952 1.000

Variable Loading 1 Loading 2 Loading 3 Loading 4 Loading 5 KMO

Full speech objectivity 0.250 0.768 0.581 0.103 0.000 0.659
Paragraph objectivity 0.395 0.471 −0.756 −0.209 0.085 0.754
Sentence objectivity 0.509 −0.191 −0.102 0.765 −0.331 0.798
Quote objectivity 0.515 −0.300 0.185 −0.056 0.779 0.716
Quote sentence objectivity 0.507 −0.248 0.216 −0.598 −0.526 0.771
Overall 0.751

Table 4. Principal component analysis for textual polarity
PC 1 PC 2 PC 3 PC 4 PC 5

Eigenvalue 3.063 1.002 0.474 0.293 0.167
Variance (%) 0.613 0.2 0.095 0.059 0.034
Cumulative variance (%) 0.613 0.813 0.908 0.967 1.000

Variable Loading 1 Loading 2 Loading 3 Loading 4 Loading 5 KMO

Full speech polarity 0.266 0.807 0.522 −0.068 0.000 0.716
Paragraph polarity 0.419 0.391 −0.791 0.203 −0.074 0.802
Sentence polarity 0.501 −0.191 −0.059 −0.772 0.336 0.82
Quote polarity 0.507 −0.297 0.207 0.047 −0.781 0.726
Quote sentence polarity 0.496 −0.265 0.236 0.596 0.522 0.787
Overall 0.775

ated using Textatistic. In total, there are five measures of readability: (1) Flesch,
(2) Flesch-Kincaid, (3) Gunning-Fog, (4) SMOG (Simple Measure of Gobbledygook),
and (5) Dale-Chall.

The first four measures use different weightages of three different pieces of
textual information: (i) average word per sentence, (ii) average syllable per word,
and (iii) the fraction of text made up of polysyllabic (three or more syllables) words.
The Dale-Chall measure uses a list of 3000 easy words, with the measure being a
weighted average of the fraction of text made up of difficult words, and the average
word per sentence.

In addition to the five measures of readability enumerated above, the principal
component analysis for readability also includes the number of difficult words (words
not on Dale-Chall’s list of easy words), the number of sentences, the number of
syllables, and the number of polysyllabic words (words with 3 or more syllables).

18

Table 5. Principal component analysis of speech grade/readability
PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9

Eigenvalue 4.65 3.757 0.378 0.092 0.06 0.046 0.009 0.006 0.002
Variance (%) 0.517 0.418 0.042 0.01 0.007 0.005 0.001 0.000 0.000
Cumulative 0.517 0.935 0.977 0.987 0.994 0.999 1.000 1.000 1.000

variance (%)

Variable Loading 1 Loading 2 Loading 3 Loading 4 Loading 5 Loading 6 Loading 7 Loading 8 Loading 9 KMO

Flesch −0.424 −0.184 0.088 0.203 −0.080 0.796 0.056 0.110 0.288 0.591
Flesch-Kincaid 0.427 0.139 0.360 0.575 −0.032 −0.146 0.004 0.121 0.549 0.542
Gunning-Fog 0.429 0.141 0.395 0.133 −0.003 0.423 0.158 −0.226 −0.606 0.563
SMOG 0.420 0.183 0.091 −0.694 0.106 0.311 −0.215 0.149 0.352 0.588
Dale-Chall 0.345 0.220 −0.821 0.261 0.087 0.250 0.124 0.071 −0.003 0.784
#Difficult words −0.163 0.479 −0.054 0.123 −0.356 0.063 −0.679 −0.366 −0.007 0.754
#sentences −0.262 0.414 0.080 0.023 0.751 0.004 0.161 −0.376 0.149 0.71
#syllables −0.209 0.457 0.119 0.079 0.134 −0.023 −0.114 0.784 −0.285 0.662
#polysyllable −0.141 0.485 0.026 −0.198 −0.516 −0.055 0.640 −0.072 0.144 0.718
Overall 0.638

The PCA for speech readability is presented in Table 5. The KMO measures are
over 0.5, indicating sampling adequacy, and the first principal component explains
more than 50 per cent of the standardised variation.

Lexical diversity of speeches. A second way to gauge language sophistication
is lexical diversity—the use of unique terms in a text. The earliest known and
simplest measure of lexical diversity is the type-token ratio—the ratio of the number
of unique terms/vocabulary to the number of total words in a text (Chotlos, 1944).
Since then, various measures have been recommended to more accurately capture
lexical diversity. Of these measures, four are known to be relatively robust to
varying text lengths: (1) Maas, (2) MSTTR, (3) MTLD, and (4) HD-D (McCarthy and
Jarvis, 2010; Torruella and Capsada, 2013). Robustness to text lengths is especially
desirable since we are comparing speeches of varying lengths (the standard deviation
of speech length is 1,825 words). Otherwise, shorter speeches would have inflated
estimates of language sophistication simply because word repetition is harder to
avoid in longer speeches.

I generate 11 measures of lexical richness in total, including the four length-
insensitive measures, using LexicalRichness, a small custom module that I wrote.28

These 11 measures are well-known measures of lexical diversity in the quantitative
linguistic literature. Descriptions, formulations, and algorithms can be found in
Section 34 of the appendix.

The final PCA analysis of 6 lexical richness measures (including the length-
insensitive measures) is presented in Table 6. The KMO measures are mostly

28 The code is open-source and hosted at https://github.com/LSYS/LexicalRichness.

19

https://github.com/LSYS/LexicalRichness

Table 6. Principal component analysis for speech lexical richness
PC 1 PC 2 PC 3 PC 4 PC 5 PC 6

Eigenvalue 4.401 0.91 0.288 0.176 0.17 0.055
Variance (%) 0.733 0.152 0.048 0.029 0.028 0.009
Cumulative variance (%) 0.733 0.885 0.933 0.962 0.99 1.00

Variable Loading 1 Loading 2 Loading 3 Loading 4 Loading 5 Loading 6 KMO

Corrected TTR 0.298 0.777 −0.235 0.101 0.492 −0.002 0.725
Mean segmental TTR 0.442 −0.242 0.122 0.576 0.052 −0.629 0.841
Moving average TTR 0.450 −0.227 0.057 0.384 0.037 0.770 0.81
MTLD 0.428 −0.142 0.558 −0.597 0.354 −0.053 0.947
HD-D 0.408 0.407 0.149 −0.132 −0.792 −0.027 0.817
Maas −0.403 0.317 0.770 0.369 0.036 0.086 0.949
Overall 0.851

above 0.8, and the first principal component captures more than 73 per cent of the
standardised variation.29

6 Formulations and algorithms for readability and
lexical richness measures

6.1 Readability measures

The five readability measures used in this paper are computed using the open-source
Textatistic library written in python by Erin Hengel.30 This section provides details
on the readability measures plus their formulations.

[R1] Flesch ease of reading measure. The Flesh score, developed by Rudolph
Flesch, is used as an indication of how easy it is to read a text. The score uses a
weighted average of (i) average word per sentence, and (ii) average syllables per
word. The higher the score, the greater the ease of reading.

Flesch = 206.835− 1.015
#words

#sentences − 84.6
#syllables
#words

29 The corrected TTR and root TTR are perfectly correlated, so root TTR was dropped. PCA is then
run in a few rounds, dropping variables with low KMO until all variables have KMO ≥ 0.5. This
results in the 6 lexical richness measures seen in Table 6.

30 The source code is hosted at https://github.com/erinhengel/Textatistic, with additional
documentation at http://www.erinhengel.com/software/textatistic/.

20

https://github.com/erinhengel/Textatistic
http://www.erinhengel.com/software/textatistic/

[R2] Flesch-Kincaid grade level measure. The Flesch-Kincaid measure indi-
cates English language competency at US grade levels. Like the Flesch measure,
the Flesch-Kincaid measure also uses a weighted average of (i) average word per
sentence, and (ii) average syllables per word, but with different weights. The higher
the scores, the higher the grade level needed to understand the text (the lower the
readability).

Flesch-Kincaid = −15.59 + 0.39
#words

#sentences + 11.8
#syllables
#words

[R3] Gunning-Fog index. The Gunning-fog measure, developed by Robert Gun-
ning, uses a weighted combination of (i) average words per sentence, and (ii) fraction
of text made up of polysyllabic words. Higher scores indicate higher reading levels
needed to understand the text (or lower readability).31

Gunning-fog = 0.4
#words

#sentences + 40
#polysyllabic

#words

[R4] SMOG. The Simple Measure of Gobbledygook (SMOG) is a measure of read-
ability that uses the fraction of text made up of polysyllabic words to estimate the
years of education needed to understand a text.32

SMOG = 3.1291 + 1.0430

√
30

#polysyllabic
#sentences

[R5] Dale-Chall readability measure. The Dale-Chall measure, developed by
Edgar Dale and Jeanne Chall, uses its own procured list of 3,000 easy words —
words that should be familiar to most 4th-grade students — to compute readability.

31 Though polysyllabic literally means more than one syllable, the term is usually used to refer to
words with three or more syllables — the meaning used in this paper.

32 The SMOG has a history of being used to estimate how difficult it is for patients to comprehend
health-related forms and document.

21

Higher scores indicate higher grade levels.33

Dale-Chall =

{ (
3.6365 + 15.79#∼Dale-Chall words

#words + 0.0496 #words
#sentence

)
if #∼Dale-Chall words

#words > 0.05

0 otherwise

6.2 Measures of Lexical Richness

Loosely speaking, the concept of textual lexical richness has also been called lexical
diversity and vocabulary diversity. The measures are computed using LexicalRich-
ness, a small python module I wrote for this paper.34 This section provides short
write-ups on the measures of lexical richness, plus their formulations and imple-
mentation psuedocode. Of these measures, (i) Maas, (ii) MSTTR, (iii) MTLD, and
(iv) HD-D have been found to be robust to varying text lengths (McCarthy and
Jarvis, 2010; Torruella and Capsada, 2013). I write APIs for 11 measures of lexical
richness, but the implementation in this paper focuses on the above 4 measures.

[L1] Type-token ratio (Chotlos, 1944). The type-token ratio (TTR) is the earliest
measure of lexical richness, and is used as the base measure of more sophisticated
lexical richnes measures:

TTR =
t

w
,

where t is the number of unique terms, and w is the total number of words in the
text. An obvious drawback of this measure is its sensitivity to text length, making
comparisons across texts of varying lengths problematic. As a text grows longer, it
becomes harder to avoid repetition, especially with the common uses of functional
words and stopwords. As a result the term count (t) increases at a slower rate than
the word count (w).

As orientation values, the TTRs of Shakespeare’s Much Ado about Nothing and
Macbeth score 0.142 and 0.201 (Malvern and Richards, 2012). A number of sugges-
tions have been made to account for the weakness of the TTR, some of which are
described below.

[L2] Root type-token ratio (Guiraud 1954, 1960). The root type-token ratio
33 The list of 3,000 easy words can be found at http://www.readabilityformulas.com/

articles/dale-chall-readability-word-list.php or in plain text format at https://github.com/
erinhengel/Textatistic/blob/master/textatistic/dale_chall.txt.

34 The source code is open-source and hosted at https://github.com/LSYS/LexicalRichness.

22

http://www.readabilityformulas.com/articles/dale-chall-readability-word-list.php
http://www.readabilityformulas.com/articles/dale-chall-readability-word-list.php
https://github.com/erinhengel/Textatistic/blob/master/textatistic/dale_chall.txt
https://github.com/erinhengel/Textatistic/blob/master/textatistic/dale_chall.txt
https://github.com/LSYS/LexicalRichness

(RTTR) uses the ratio of term count to the square of total word count.

RTTR =
t√
w

[L3] Corrected type-token ratio (Carrol 1964). The corrected type-token ratio
(CTTR) uses the ratio of term count to the square of 2 times the total word count.

CTTR =
t√
2w

[L4] Herdan (1960, 1964). Herdan’s measure takes the ratio of log of term count
to the log of word count.

Herdan =
log t

logw

[L5] Summer (1966). Summer’s measure is similar to Herdan’s, but takes double
logs instead.

Summer = log(log t)

log(logw)

[L6] Maas (1972). Maas’s measure uses the ratio of the difference between log of
word count and log of term count, to square of the log of word count. Unlike the
previous 5 measures, the lower the Maas measure, the higher lexical richness is.

Maas = logw − log t

(logw)2

[L7] Dugast (1978). Dugast’s measure is the inverse of Maas’s measure: the ratio
of the square of the log of word count, to the difference between log of word count
and log of term count.

Dugast = (logw)2

logw − log t

23

[L8] Mean segmental type-token ratio (Johnson 1944). The mean segmental
type-token ratio (MSTTR) estimates a text’s lexical richness by taking the average
TTR of fixed segments of a text. For example, if a text has 210 words, and a segment
size s of 100 is chosen, the first 100 words form the first segment, the next 100 words
form the second segment. The MSTTR is the TTR of the first segment plus the TTR
of the second segment, divided by two. The remaining 10 words are discarded.

1 choose s # s ize of segment
2 sp l i t text into segments of s ize s
3 for segment in segments
4 compute t t r
5 compute mean t t r

[L9] Moving average type-token ratio (Covington 2007, Covington and Mc-
Fall 2010). The moving average type-token ratio (MATTR) uses a sliding window
across a text, computing the lexical richness as the average TTR score of the windows.
For a selected window size of x for example, we first compute TTR for the tokens
in positions 1 to x, then compute the TTR for tokens in position 2 to x + 1, then
compute the TTR for tokens in position 3 to x+ 2, and so on till the end of the text
for tokens in position y to x+ y − 1 where x+ y − 1 is the last position. The average
of the TTR score for all windows is then taken as the final measure.

1 choose x # s ize of windows
2 sp l i t text into s l id ing windows of s ize x
3 for each window in text
4 compute t t r
5 compute mean t t r

[L10] MTLD (McCarthy 2005, McCarthy and Jarvis 2010). The Measure of
Textual Lexical Diversity (MTLD) measures lexical richness using the mean length
of sequential words in a text that is able to maintain a minimum TTR threshold
score. The recommended threshold t is in the range of [0.66, 0.75], with t = 0.72 a
common choice. This measure iterates over words in a text with a running TTR
score until the score falls below the threshold, at which point the factor counter is

24

increased by 1 and the running TTR score is reset. This process is repeated until
the end of the text. The score is the total number of words divided by the count
of factors in the text (the average length of sequential words able to maintain the
minimum threshold). The same process is repeated with the reversed text, that is,
going backwards from the last word to the first. The final MTLD is the average of
the forward and reverse scores.

1 choose t
2 # i n i t i a l i s e counters and unique term set
3 word_counter = 0
4 factor_counter = 0
5 set = { }
6
7 for word in text
8 word_counter += 1
9 i f word not in set

10 add word to set
11 t t r = len (set) / word_counter
12 i f t t r < threshold
13 factor_count += 1
14 # reset counter and set
15 word_counter = 0
16 set = { }
17 score = len (text) / factor_count
18
19 repeat with reverse-ordered text
20 mtld = (forward_score + reverse_score) / 2

[L11] HD-D (McCarthy and Jarvis 2007). TheHD-D score uses the hypergeomet-
ric distribution to compute the probability of each word in the text appearing at least
once in a random draw d of words without replacement. For example, consider a text
containing the wordmedium. Using the hypergeometric distribution, we can find the
probability of getting medium at least once if we drew a random sample of d words
without replacement from the text, say ρ. That is, the probability of getting medium
at least once in the sample of d words is ρ, or that medium will occur in ρ (×100) per
cent of all possible combinations of d words drawn from the text. Its contribution to
the final score is ρ× 1

d
. The final score sums over every individual word’s contribution.

1 choose d
2 hdd = 0

25

3 for word in text
4 compute ρ # prob word of occuring at least once in d draws from text
5 contr ibut ion = ρ / d
6 hdd += contribution

References
Blei, D. (2012). Probabilistic topic models. Communications of the ACM 55(4).
Blei, D., A. Y. Ng, and M. I. Jordan (2003). Latent Dirichlet Allocation. Journal of

Machine Learning Research 3, 993–1022.
Bouma, G. (2009). Normalized (Pointwise) Mutual Information in Collocation

Extraction. Proceedings of German Society for Computational Linguistics (GSCL
2009), 31–40.

Breiman, L. (2001). Random Forests. Machine Learning 45(1), 5–32.
Caruana, R. and A. Niculescu-Mizil (2006). An empirical comparison of supervised

learning algorithms. Proceedings of the 23th International Conference on Machine
Learning, 161–168.

Chang, J., S. Gerrish, C. Wang, and D. M. Blei (2009). Reading Tea Leaves: How
Humans Interpret Topic Models. Advances in Neural Information Processing
Systems 22, 288—-296.

Chawla, N. V., K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer (2002). SMOTE:
Synthetic minority over-sampling technique. Journal of Artificial Intelligence
Research 16, 321–357.

Chotlos, J. W. (1944). IV. A Statistical and Comparative Analysis of Individual
Written Language Samples. Psychological Monographs 56(2), 75–111.

Řehůřek, R. and P. Sojka (2010). Software framework for topic modelling with large
corpora. In Language Resources and Evaluation Conference.

Griffiths, T. L., M. Steyvers, D. M. Blei, and J. B. Tenenbaum (2004). Integrating
Topics and Syntax. In Proceedings of the 17th International Conference on Neural
Information Processing Systems, NIPS’04, Cambridge, MA, USA, pp. 537–544.
MIT Press.

Ho, T. K. (1995). Random Decision Forests. In Proceedings of 3rd International
Conference on Document Analysis and Recognition, Document Analysis and Recog-
nition, 1995., Proceedings of the Third International Conference on VO - 1, pp.
278.

Jurafsky, D. and J. H. Martin (2000). Speech and Language Processing: An Intro-
duction to Natural Language Processing, Computational Linguistics, and Speech
Recognition. Prentice Hall series in artificial intelligence. Upper Saddle River,
N.J. : Prentice Hall, 2000.

Lau, J. H., D. Newman, and T. Baldwin (2014). Machine Reading Tea Leaves :
Automatically Evaluating Topic Coherence and Topic Model Quality. Proceedings

26

of the 14th Conference of the EuropeanChapter of the Association for Computational
Linguistics (EACL 2014) (Eacl), 530–539.

Lemaitre, G., F. Nogueira, and C. K. Aridas (2017). Imbalanced-learn: A Python
Toolbox to Tackle the Curse of Imbalanced Datasets inMachine Learning. Journal
of Machine Learning Research 18, 1–5.

Loh, W.-Y. (2014, dec). Fifty Years of Classification and Regression Trees. Interna-
tional Statistical Review 82(3), 329–348.

Malvern, D. and B. Richards (2012). Measures of Lexical Richness. The Encyclopedia
of Applied Linguistics (2000).

McCarthy, P. M. and S. Jarvis (2010). MTLD, vocd-D, and HD-D: A validation study
of sophisticated approaches to lexical diversity assessment. Behavior Research
Methods 42(2), 381–392.

Mullainathan, S. and J. Spiess (2017). Machine Learning: An Applied Econometric
Approach. Journal of Economic Perspectives 31(2), 87–106.

Newman, D., J. Lau, K. Grieser, and T. Baldwin (2010). Automatic Evaluation of
Topic Coherence. Human Language Technologies: The 2010 Annual Conference
of the North American Chapter of the ACL (June), 100–108.

Pang, B., L. Lee, and S. Vaithyanathan (2002). Thumbs up?: sentiment classification
using machine learning techniques. Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 79–86.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, G. Louppe, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay (2012). Scikit-learn:
Machine Learning in Python. 12, 2825–2830.

Petrocik, J. R. (1996). Issue Ownership in Presidential Elections, with a 1980 Case
Study. American Journal of Political Science 40(3), 825–850.

Pritchard, J. K., M. Stephens, and P. Donnelly (2000). Inference of Population
Structure Using Multilocus Genotype Data. Genetics 155(2), 945–959.

Puglisi, R. (2011). Being The New York Times: The Political Behaviour of a News-
paper. B.E. Journal of Economic Analysis and Policy 11(1).

Röder, M., A. Both, and A. Hinneburg (2015). Exploring the Space of Topic Coherence
Measures. Proceedings of the Eighth ACM International Conference on Web Search
and Data Mining - WSDM ’15, 399–408.

Torruella, J. and R. Capsada (2013). Lexical Statistics and Tipological Structures:
A Measure of Lexical Richness. Procedia - Social and Behavioral Sciences 95,
447–454.

Varian, H. R. (2014). Big Data: New Tricks for Econometrics. Journal of Economic
Perspectives 28(2), 3–28.

27

	Downloading and parsing of textual data
	Classifying newspaper articles
	Selecting the best classifier
	Classification workflow

	Extracting quotes from classified articles
	Modelling topic distributions
	Latent Dirichlet Allocation
	Choosing optimal number of topics
	Implementation

	Additional textual and language measures
	Formulations and algorithms for readability and lexical richness measures
	Readability measures
	Measures of Lexical Richness

	References

