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Outline Data Geography Social clusters Quantifying segregation Findings Correlates Discussion

Outline 1/n

I <Title of study>:
• Mobile phone data in Singapore (small densely urban city)
• Residential vs experienced segregation
• What is the difference?
• What explains the difference?

I Data
• Mobile phone GPS ping records
• Jan–Mar 2020 (3 months/91 days)
• Neighborhood-level census demographics & characteristics

I Segregation measures
• Existing measures exists (Massey and Denton 1988)
• Exposure measure: probability a type B individual will encounter a type W individual based on shared

residential areas
• Low exposure→ high segregation
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Outline 2/n

I Why it matters (aka motivation)
• Labor market opportunities (Banerjee and Ingram 2018; Hensvik and Skans 2016)
• Segregation worsens socioeconomic markers such as schooling, employment, and marriage (Chay et al.

2014; Chetty et al. 2016)
• Exposure reduces discrimination (Rao 2019)
• Exposure increases knowledge spillovers (Atkin et al. 2022)

I Revisiting segregation:
• Segregation is usually based on census/residency

(Hutchens 2001; Jones and Pebley 2014; Krivo et al. 2013; Palmer et al. 2013; Sin 2002)
• Social mixing in a physical space
• Experienced segregation—where I go—is different to residential segregation—where I live
- Unsupervised learning algorithm to retrieve social clusters
- Adapted experienced segregation measure

I Our findings:
• Measures based on residence/census overstates experienced segregation
• Key neighborhood amenities and travel accessibility affect segregation 2
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Outline 3/n

I Segregation w/o accounting for day-to-day mixing is overstated:
• Exposure based on real-time movement > exposure based on residence
• Experienced segregation < wealth segregation
• When we do not account for the choice in where people go in their day-to-day lives, segregation is

overstated

I Segregation is linked to neighborhood amenities and travel access:
• Access to transit stations linked to higher exposure of poor to wealthy
• Travel inequity linked to higher experienced segregation
• Parks linked to higher experienced segregation

I Asymmetries in experienced segregation:
• Exposure of wealthy to poor much less linked to neighborhood factors than exposure of poor to wealthy
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Data 1/4

I Backbone of Data: CITYDATA.ai GPS pings
• Neighborhood-daily level
• Jan–Mar 2020 (3 months, 91 days)
• GPS pings −→ O–D flows (Lee, Lim, and Shen 2021; Lim and Shen 2022)
• Sparsity: Trim daily O–D flows + tests of representativeness (Lim and Shen 2022)

I Type: by income/wealth
• Residence type: 1–2 room public flats vs private houses
• House micro-transactions

I Other data: Neighborhood-level ( 200) characteristics
• Age, gender, ethnic (census)
• Neighborhood amenities (official shape files)
• Crowd-sourced F&B POIs (OSM)
• Travel access (from ∼2.5m H3-9 pairs)
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Data 2/4: CITYDATA.ai GPS ping records
/.

2020-01-01

admiralty_subzone_sg

admiralty_subzone_sg_2020_01_01_deviceList.csv.gz

airport_road_subzone_sg

airport_road_subzone_sg_2020_01_01_deviceList.csv.gz

2020-01-02

. . .

. . .

2020-03-31

admiralty_subzone_sg

admiralty_subzone_sg_2020_03_31_deviceList.csv.gz

airport_road_subzone_sg

airport_road_subzone_sg_2020_03_31_deviceList.csv.gz

. . .

Example flat file:

admiralty_subzone_sg_2020_01_01_deviceList.csv.gz

Hash OS

8E545E1C31F91F777C894B3BD2C2E7D7044CC9DD Android
40BD001563085FC35165329EA1FF5C5ECBDBBEEF iOS
. . . . . .
. . . . . .
1D372C3AA0A28A5B7418A01405C621CCD523F73E Android

O-D panel

I Infer home using most frequent
appearance

I Inter-neighborhood presence −→ O-D

flows
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Residence type 1/2
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Residence type 2/2

1st-20th 21st-40th 41st-60th 61st-80th 81st-100th
Income (by quintiles)
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Proxying income with residence type

Residence type

I Proportion of residents living in
1–2-room public highrise flats (HDB)

I Residence data available at ∼200
neighborhood level

I L = public 1–2 rm residents

I H = private housing residents

7



Outline Data Geography Social clusters Quantifying segregation Findings Correlates Discussion

Geography

N2 KM

5 regions

I 5 regions

I 55 census areas

I ≈ 300 subzones

I ≈ 200

neighbourhoods

(≈ 1km2)
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Geography

N2 KM

55 census areas
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Geography

N2 KM

≈ 300 subzones

I 5 regions

I 55 census areas

I ≈ 300 subzones

I ≈ 200

neighbourhoods

(≈ 1km2
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Geography

N2 KM

≈ 200 neighborhoods

I 5 regions

I 55 census areas

I ≈ 300 subzones

I ≈ 200

neighbourhoods

(≈ 1km2)
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Retrieving Social Clusters 1/4
Resident (Census planning area)

Real-time (social clusters)

I Social clusters = clusters of neighborhoods where people are
more likely to visit

I Clustering to study urban mobility & behavior
(Di Clemente et al. 2018; Wang et al. 2018)

1. GPS pings −→ O-D flows

2. O–D flows −→ Distance matrix
(Adachi et al. 2020; Tolbert and Sizer 1996)

3. Distance matrix −→ Affinity matrix

4. Affinity matrix −→ Spectral clustering
(Pedregosa et al. 2011)

I Residential boundaries 6= social boundaries
12
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Retrieving Social Clusters 2/4

Spectral clustering—Grid search curve

25 50 75 100 125 150 175 200
Number of clusters

0.05

0.00

0.05

0.10

0.15

Si
lh

ou
et

te
 c

oe
ffi

ci
en

t

(78, 0.144) (91, 0.147)

(75, -0.05)

= *

= 1
Chosen classification
Global optimal
Dummy classification

I Unsupervised

I Silhouette score

I Search over K = number of
clusters

I Search over γ = coefficient in
rbf kernel

I Preferred: K = 78
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Retrieving Social Clusters 3/4

Evaluating clusters via
silhouette score
(Rousseeuw 1987)

si =
bi − ai

max{ai , bi}
∈ [−1, 1]

I bi = mean intra-cluster distance

I ai = mean inter-cluster distance

I Denominator normalizes score to [-1,1]

I 400% better than dummy classifications
14
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Retrieving Social Clusters 4/4
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Quantifying social segregation 1/2: Residential Exposure (L to H)

ELH
a =

1
|La|

∑
i∈La

sH
c(i) (1)

I Residential exposure of type L to type H (traditional measure)
(Athey et al. 2020; Massey and Denton 1988)

I | · | = size

I sH
c(i) = share of H in individual i’s census unit c (eg neighborhoods)

I E = prob. that L physically come into contact with H (Massey and Denton 1988)

I a = census planning area of neighborhoods
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Quantifying social segregation 2/2: Real-time Exposure (L to H)

ẼLH
a =

1

|L̃a|

∑
i∈L̃a

s̃H
c(i) (2)

I Real-time exposure is analogous— .̃ denotes measures imputed using GPS pings

I Eg s̃H
c(i) imputed using flows from GPS pings:

ñL
d =

∑
d

πod · πL
o · Deviceso︸ ︷︷ ︸

share of
devices imputed

as type L︸ ︷︷ ︸
share of imputed
L-type that visit d

I a = social cluster of neighborhoods (from spectral clustering) 17
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Real-time Exposure: Sensitivity of clustering

I Testing sensitivity of spectral clustering

I Spectral clustering uses K-means, which
is sensitive to (pseudo-random) init.

I Iterations 0–99,999: Different init. for
social clusters

I Iterations 10,000–15,000: Different init.

for dummy clusters
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Quantifying Experienced Segregation 1/2

Wealth segregation: sd =
2
3︸ ︷︷ ︸

norm.
constant

∑
q

∣∣∣∣πdq −
1
4

∣∣∣∣︸ ︷︷ ︸
disparity =

deviation from
equal distr.

∈ [0, 1] (Morales et al. 2019) (3)

I Wealth quartile inferred by origin neighborhood & house microtransactions

I πdq is proportion of visitors to neighborhood d from wealth quartile q:

πdq =

devices in wealth quartile q from o to d︷ ︸︸ ︷∑
o

πod · 1{qo = q} · Devices∑
o πod · Devices
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Quantifying Experienced Segregation 2/2

Experienced segregation: so =
2
3︸ ︷︷ ︸

norm.
constant

∑
q

∣∣∣∣πoq −
1
4

∣∣∣∣︸ ︷︷ ︸
disparity =

deviation from
equal distr.

∈ [0, 1] (Morales et al. 2019) (4)

I πoq is the probability that someone from o will be exposed to someone from wealth
quartile q

I Experienced segregation = where I go And where other people go

πoq =
∑

d

πod︸ ︷︷ ︸
prob. of flow
from o to d

· πdq︸ ︷︷ ︸
prob. visitor

from d is
from wealth
quartile q
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Social segregation is overstated?
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I Parity plot—Real-time vs residential

I Poor to wealthy

I Real-time exposure of poor to wealthy is
higher than residential exposure of poor to
wealthy
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Social segregation is overstated?
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I Parity plot—Real-time vs residential

I Wealthy to poor

I Real-time exposure of wealthy to poor is
(mostly) higher than residential wealthy to
poor

I Asymmetric—(im)parity less clear than
poor to wealthy

22



Outline Data Geography Social clusters Quantifying segregation Findings Correlates Discussion

Experienced segregation
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I Parity plot—Experienced vs wealth
segregation

I Experienced segregation is lower than
wealth segregation
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Correlates of Residuals 1/n

I We describe the factors that correlate with lower segregation based on our
measure of real-time exposure and experienced segregation

I Residualise real-time measures using their residential counterparts

I Reporting correlates of residuals with neighborhood factors

I Factors that stand out:
• National parks
• F&B
• Travel access

Shen 2022
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Real-time exposure—Poor to Wealthy

0.4 0.2 0.0 0.2 0.4
Pearson correlation

  Travel inequity      -0.10(-0.24 to  0.04)
  Driving (4w) time    -0.08(-0.22 to  0.06)
  Transit time          0.07(-0.07 to  0.20)
  Transit stations      0.13(-0.00 to  0.26)
Travel access
  Fast-foods            0.19( 0.06 to  0.31)
  Bars & pubs           0.09(-0.05 to  0.22)
  Cafes                 0.14( 0.00 to  0.26)
  Restaurants           0.12(-0.01 to  0.25)
  Hawkers              -0.02(-0.15 to  0.12)
Food & beverage
  Tourist attractions   0.10(-0.03 to  0.23)
  Sport facilities     -0.05(-0.19 to  0.08)
  National parks        0.14( 0.00 to  0.26)
  Supermarkets         -0.00(-0.13 to  0.13)
  Libraries            -0.01(-0.14 to  0.12)
Amenities
  % female              0.23( 0.10 to  0.36)
Gender mix
  % minority ethnic y   0.21( 0.08 to  0.33)
  % minority ethnic x  -0.22(-0.34 to -0.08)
  % majority ethnic     0.12(-0.02 to  0.25)
Ethnic mix
  Age group > 65        0.12(-0.02 to  0.25)
  Age group 40 64       0.08(-0.05 to  0.21)
  Age group 20 39      -0.21(-0.34 to -0.08)
  Age group 10 19      -0.04(-0.17 to  0.10)
  Age group 0 9         0.03(-0.11 to  0.16)
Age group
Variable               Est.(95% Conf. Int.) 

0.14     197
0.26     197
0.33     201
0.05**   219

0.0***   218
0.19     218
0.04**   218
0.08*    218
0.81     219

0.14     219
0.42     219
0.04**   219
0.99     219
0.91     219

0.0***   215

0.0***   215
0.0***   198
0.08*    215

0.08*    212
0.22     215
0.0***   215
0.59     213
0.69     213

P-value  N  

I Neighborhoods w/ more
“young people” have lower
exposure

I Ethnic mix matters

I Neighborhoods with more
parks have more exposure
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Real-time exposure—Wealthy to Poor

0.4 0.2 0.0 0.2 0.4
Pearson correlation

  Travel inequity       0.14(-0.00 to  0.27)
  Driving (4w) time     0.00(-0.14 to  0.14)
  Transit time         -0.10(-0.24 to  0.03)
  Transit stations     -0.18(-0.30 to -0.05)
Travel access
  Fast-foods           -0.12(-0.25 to  0.01)
  Bars & pubs           0.03(-0.11 to  0.16)
  Cafes                -0.02(-0.15 to  0.12)
  Restaurants          -0.01(-0.14 to  0.13)
  Hawkers               0.05(-0.08 to  0.18)
Food & beverage
  Tourist attractions   0.00(-0.13 to  0.13)
  Sport facilities     -0.00(-0.14 to  0.13)
  National parks       -0.12(-0.25 to  0.02)
  Supermarkets         -0.03(-0.17 to  0.10)
  Libraries             0.02(-0.11 to  0.15)
Amenities
  % female             -0.08(-0.21 to  0.06)
Gender mix
  % minority ethnic y  -0.03(-0.16 to  0.11)
  % minority ethnic x   0.08(-0.06 to  0.21)
  % majority ethnic    -0.06(-0.20 to  0.07)
Ethnic mix
  Age group > 65        0.09(-0.05 to  0.22)
  Age group 40 64      -0.04(-0.17 to  0.10)
  Age group 20 39      -0.05(-0.18 to  0.08)
  Age group 10 19      -0.01(-0.14 to  0.12)
  Age group 0 9        -0.12(-0.25 to  0.01)
Age group
Variable               Est.(95% Conf. Int.) 

0.05*    197
0.97     197
0.14     201
0.01***  219

0.07*    218
0.68     218
0.8      218
0.91     218
0.45     219

0.99     219
0.96     219
0.08*    219
0.62     219
0.75     219

0.27     215

0.71     215
0.29     198
0.35     215

0.19     212
0.58     215
0.46     215
0.88     213
0.07*    213

P-value  N  

I More transit stations—lower
exposure
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Experienced segregation

0.4 0.2 0.0 0.2 0.4
Pearson correlation

  Travel inequity       0.16( 0.02 to 0.29)
  Driving (4w) time     0.01(-0.13 to 0.15)
  Transit time         -0.13(-0.27 to 0.01)
  Transit stations     -0.12(-0.25 to 0.01)
Travel access
  Fast-foods           -0.07(-0.21 to 0.06)
  Bars & pubs           0.03(-0.11 to 0.16)
  Cafes                -0.00(-0.14 to 0.13)
  Restaurants           0.07(-0.07 to 0.20)
  Hawkers               0.15( 0.02 to 0.28)
Food & beverage
  Tourist attractions   0.02(-0.11 to 0.15)
  Sport facilities      0.04(-0.09 to 0.17)
  National parks        0.19( 0.06 to 0.32)
  Supermarkets          0.06(-0.08 to 0.19)
  Libraries             0.03(-0.10 to 0.17)
Amenities
  % female              0.05(-0.09 to 0.18)
Gender mix
  % minority ethnic y   0.14( 0.01 to 0.27)
  % minority ethnic x  -0.08(-0.22 to 0.06)
  % majority ethnic     0.01(-0.12 to 0.15)
Ethnic mix
  Age group > 65        0.09(-0.04 to 0.23)
  Age group 40 64       0.05(-0.08 to 0.19)
  Age group 20 39      -0.10(-0.23 to 0.04)
  Age group 10 19      -0.03(-0.17 to 0.10)
  Age group 0 9        -0.06(-0.19 to 0.08)
Age group
Variable               Est.(95% Conf. Int.)

0.02**   194
0.84     194
0.06*    198
0.07*    216

0.27     215
0.68     215
0.96     215
0.34     215
0.02**   216

0.76     216
0.54     216
0.0***   216
0.39     216
0.61     216

0.5      212

0.03**   212
0.27     195
0.85     212

0.17     209
0.45     212
0.16     212
0.62     210
0.38     210

P-value  N  

I Parks

I Hawkers

I Travel inequity
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Discussion

Are flows pro-social?

I Social exposure zones can capture daily trip hops

I Trip hops constitute an important form of interaction where individuals share
physical activity space
(Athey et al. 2020; Cagney et al. 2020)
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Discussion

Experiential vs. physical segregation

I GPS and geolocation data allows us to incorporate the fact that segregation is
also behavioural and mobility choices

I Real-time based measures of exposure and segregation based on experience are
lower than their residential counterparts
(Athey et al. 2020)

I Segregation is more than where we live

I What does this say about housing policies that uses quotas to socially integrate?

29
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Dicussion

The bigger (areal) picture

I Why do environmental/areal factors matter?

I Where we live matters
(hence all the lit. on neighborhood choices, e.g., Agostinelli et al. 2021; Ferreira and Wong 2022)

I Zip code > genetic code?

I Singapore: highly connected + densely urban + mix of urban planning + social
policy = consciously created common spaces. What does this say about physical
vs. experiential segregation and how it relates to other holistic health & population
outcomes? 30
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