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Abstract

Background Cities shape child health. Effects are unlikely to be driven by a single feature,
but are likely influenced jointly by built and social environments.

Methods We investigated the interaction between increasing park accessibility and pedes-
trian density on child and adolescent adiposity in 1032 children across 15 years from the
Growing Up in Singapore Towards healthy Outcomes (GUSTO, 11,027 child-year obser-
vations, 2010-2024). Annual changes in park accessibility within a 15-minute commute
were computed using up-to-date governmental inventories. Pedestrian density was derived
from anonymized mobile phone GPS data, spatially smoothed to 0.1 km? hexagons. We
modeled annual changes in BMI (kg/m?) from birth to early adolescence as a function of
changes in park access interacted with density using linear fixed-effect models, adjusting
for child, calendar year, and origin/destination neighborhood effects and two-way clustered
standard errors (child, geographical region).

Results Mean annual BMI gain was 0.3 kg/m? (SD 1.3), consistent with expected child
growth. Overall, increasing park accessibility was associated with a —0.006 (95% CI:
[—0.016, —-0.004]) annual BMI gain. However, the parks—density interaction was negative
(=0.021, 95% CI: [-0.033, -0.009]), implying different effects of parks access at differ-
ent pedestrian densities: One-SD increase in park access (~3 parks) was associated with
—0.005, —0.02, and —0.03 kg/m” at low (25th percentile), median, and high (75th per-
centile) density. Age-specific analyses indicate stronger park-density interactions at ages
5-7 and 10-11 years. Results were robust across sensitivity models and consistent across
weight-related anthropometric measures (BMI and weight z-scores).

Conclusion Environmental effects are highly context-dependent. In this urban cohort,
increases in park access were associated with lower BMI only in higher-density, higher-
footfall areas. Increasing parks in low-density areas may not realize the same benefit.
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1 Background

Childhood obesity has quadrupled globally since 1990, with childhood overweight and obesity
prevalence likely to reach 30% by 2030.? Recent data suggests these trends accelerated during the
2020 pandemic.”~* Excess adiposity increases long-term risks, including metabolic disorders,
cardiovascular diseases, and psychosocial difficulties that persist into adulthood.*~'” On current
trends, the projected global economic cost will exceed US$4.3 trillion, or 3% of the world
economy (equivalent to the 2020 pandemic shock).?

Given that 55% of children (~1.5 billion) now live in cities, !

an important public health
conversation has turned to how cities can create anti-obesogenic environments'%!>~!* that
buffer adverse adiposity effects from urbanization.”!! A large body of work has established
that neighborhood parks in urban spaces can promote outdoor play in children.'*'° Since play

and physical activity directly buffer excess adiposity, ">

neighborhood parks and green spaces
have emerged as a natural lever for intervention.
While some studies have found protective associations of urban green spaces and parks for

adiposity and related cardiometabolic markers, >~

many others report null or adverse associa-
tions. '0:12-14.17.30.31 Thege inconsistencies suggest that park effects are context-dependent. One
such salient context is urban density: the level of pedestrian activity and foot traffic in daily lived
experiences.>>>* Higher-density areas typically imply more amenity stops, greater walkability,
and therefore a greater propensity for unstructured outdoor activities that spur spontaneous
visits to parks. '

Singapore, where childhood obesity mirrors global numbers in quadrupling (Fig. 1), is a
well-suited testbed to examine how parks and urban pedestrian activity shape child adiposity. As
a compact city-state with residential densities comparable to Tokyo and New York, Singapore
maintains relatively egalitarian amenity distribution through public housing and ethnic integra-
tion.** Low crime rates minimize concerns about neighborhood safety that might complicate
interpretations.® Active urban planning translates into temporal variation in parks as neigh-
borhoods are (re)developed over time. Finally, the Growing Up in Singapore Towards healthy
Outcomes (GUSTO) cohort offers an opportunity to follow children from birth to age 14 (at the

time of study), with repeated and objective anthropometric measurements and geographically
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diverse residential histories that we can link to land use and density for within-child comparison
over time.

This study examined the protective association of neighborhood parks and whether urban
density changes that association. Specifically, we tested whether living in high-footfall areas
strengthens the inverse association between park access and adiposity measures, combining re-
peated park and anthropometric measures with network-based travel-time data and anonymized

mobile phone trace data in a longitudinal model.

2 Methods

2.1 Study population

The study population is drawn from the Growing Up in Singapore Towards healthy Outcomes
(GUSTO) cohort, a prospective mother-offspring birth cohort established in 2009. Pregnant
women in their first trimester were recruited over the course of 2009-2010 from two major public
maternity hospitals (KK Women’s and Children’s Hospital and National University Hospital).
The study recruited 1247 pregnant women aged 20-50 years, mostly of Chinese, Indian, and
Malay ethnicity (approximately 97% of ethnic composition).!*® Eligibility criteria included
being aged 18 or older, a Singapore citizen or permanent resident, and intending to reside
locally for at least five years. Women were excluded if they had significant medical conditions
(e.g., type 1 diabetes mellitus, psychosis). There were 1,177 deliveries, with an average annual
attrition of approximately 3%, resulting in a population closer to 800 by 2020. Although not
geographically representative by design, participant residences closely matched those of women
aged 20-50 in the 2010 Census, with a correlation of 0.93 across neighborhoods. '*” For this
analysis, we used 15 years of follow-up data (2010-2024) from 1,032 children, contributing

11,027 child-year observations (Tab. 1).

'https://web.archive.org/web/20121021001924/https://www.singstat.gov.sg/pubn/popn/popu
lation2012b.pdf.
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(b) Prevalence of overweight and obesity in GUSTO cohort
Figure 1|Prevalence of overweight and obesity in Singapore based on NCD-RisC estimates and the GUSTO cohort.
Panel (a) NCD-RisC’s (NCD Risk Factor Collaboration) posterior mean prevalence for Singapore, 1990-2022, for
ages 5-19.! The legend shows the percentage increase in prevalence from 1990 to 2022. Panel (b) GUSTO cohort
prevalence from birth. Dashed lines show age- and calendar-year matched series from the NCD-RisC estimates
for Singapore (same sex, same age, same year), where available. 2023 value in the NCD-RisC line is from 2022
data. No NCD-RisC estimates below 5.

2.2 Anthropometry

Weight was measured using calibrated electronic scales and length/height using stadiometers
(recumbent length < 24 months, standing height thereafter). Each record was linked to the
child’s exact age in days, which is used to map to residence. To construct a regular child-
year panel, all anthropometric measures were combined into a long dataset indexed by date.
For years without a measure, values were linearly interpolated (no extrapolation) between the
nearest observations. Age- and sex-standardized z-scores were derived using World Health

Organization standards (Fig. 1).'”

2.3 Residential history

Residential histories were constructed from the time-stamped postcode records collected during

follow-up. Residential moving was defined by observed changes in postal code across follow-
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Table 1|Overview of data

A. Sample

No. children (n) 1,032 —
No. years (n, range) 15 (2010-2024)
No. child-year observations (n) 11,027 —
Year obs. per child (mean, SD) 10.7 3.5
Avg. days between measures (mean, SD) 353.9 (36.6)
Non-movers (n, %) 400 (38.8)
Movers (n, %) 632 (61.2)
B. Main measures Mean (SD)
ANumber of parks within 15-minute trip 0.36  (3.51)
Urban density (0.1km?), 2020 GPS traces 1147.5 (1538.4)
ABMI (kg/m?) per year 0.30  (1.30)
AWeight (kg) per year 333 (2.70)
AHeight (cm) per year 7.61 (4.32)
BMI at age 5 (2015) 15.6 2.1
BMI at age 10 (2020) 18.6 4.1)
BMI > age 12 (2023/24) 20.0 4.2)
C. Geography

No. Subzones (neighborhoods) 177 —
No. Planning areas (geographical cluster var.) 32 —

Avg. child per planning area per year (mean, SD)  26.4 23.4

up. We classified children as non-movers (400, 39%) and movers (632, 61%). Among movers,
we identified serial movers (207, 20%) as those who moved twice or more within the 15 years.
Multiple relocations within a relatively short timeframe may reflect a salient preference for
location choice, raising stronger concerns about selection.*® Cognizant of this, fully adjusted
models excluded serial movers to account for location choice.?® We assigned residence based
on the closest residential record before the child’s birthday. Each residence was then geocoded
to the spatial units, including planning areas, subzones (neighborhoods), and hexagonal cells

used for exposure construction.

2.4 Access to parks

Annual measures of park access were derived by combining a government annual land use
inventory of park parcels with high-resolution, network-based travel times. We first represented
the city as a grid of 0.1km? hexagonal cells (200 m edge length), restricting to approximately

2.4k cells covering populated, on-land areas (excluding sea, water catchments, nature reserves,
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and sparsely inhabited locations). We then enumerated 2.87 million centroid-to-centroid pairs
and queried HERE Technologies’ routing engine for door-to-door travel durations, incorporating
networks, walking infrastructure, and public-transport schedules. For each child-year residence
(mapped to its postal-code hex cell), we identified all cells reachable within 15 minutes, con-
sistent with ‘15-minute city’ frameworks emphasizing proximity to daily needs,*” and overlaid
them with park parcels (public parks, gardens, and pedestrian green linkages). Park access was
defined as the number of parks within this 15-minute catchment, recomputed annually to reflect

contemporaneous land zoning and residence.?’

2.5 Urban pedestrian density

We measure neighbourhood urban density using anonymised global positioning system (GPS)
ping traces from CITYDATA.ai, aggregated over January—March 2020 (excluding Chinese New
Year), with device IDs hashed and daily presence observed at the neighbourhood level. 3+
To derive a spatially refined density measure, we areally interpolated GPS traces from the
neighborhood polygons to a regular grid of ~0.1km? hexagons (0.1 km? ~ 25 acres; width
350 m ~ 1,150 ft; ~city block size).*! Before interpolation, hexagons were clipped to official
neighborhood boundaries to avoid overlap with water bodies and other uninhabitable areas, and
further masked using satellite-derived Copernicus Land Monitoring data to exclude non-urban
land.** For each hexagon, we then computed weekly median traces per hexagon and winsorized
the top 1%. This urban density is time-invariant, under the assumption that neighborhood
activity ranks remain stable over the sample period, but spatially varying at high resolution,

capturing relative baselines of human presence and pedestrian activity across the city.

2.6 Individual-level child and maternal covariates

All models adjust for baseline maternal and child characteristics collected at recruitment. Ma-
ternal covariates included age (at delivery), ethnicity (Chinese, Indian, Malay, Other), education
(college vs. non-college), monthly household income (< 2000 vs. > 2000 SGD), country of
birth, housing type (public vs. private), and occupation. All models adjust for the child’s sex

and age in days (from clinic visit dates).
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2.7 Statistical Analyses

We modeled the short-run, contemporaneous annual change in BMI as a function of the annual
change in park access and urban density:
ABMLI;;; = BiAParks;;; + BrDensity; i+ B3 (AParks x Density); it

+ yX; + neighborhood;; + child; + year, + &;j;, (1)

where i indexes children, j residential neighborhoods, and ¢ years. X;; includes the child and
maternal baselines (Section 2.6). 81 captures the association between a one-unit increase in park
access and ABMI (evaluated at the reference mean density). 3 captures how the association
between changes in park access and ABMI varies with urban density.

To adjust for selection into neighborhoods for movers, we include fixed effects for their
origin and destination neighborhoods, allowing families that come from or relocate to the same
neighborhoods to have shared effects. We likewise adjust for the residing neighborhood for non-
movers. child; control for time-invariant child and family-level factors. 7; captures the broad
developmental trends, with exact age adjusted separately (X;;). This structure compares within-
child changes, holding constant neighborhood-specific unobservables and trends. Fully-adjusted
models two-way cluster standard errors by child and planning area, recognizing that residuals
are likely serially correlated within child (e.g., growth spurts, family history, routines) and
correlated across children within the same areas (e.g., local amenities, school catchment). The
key assumption is that any within-child changes in BMI resulting from unobserved factors related
to changes in parks have been absorbed by shared developmental trends across time and age,

neighborhood characteristics (including location choices), and child-specific predispositions.

2.7.1 Predicting changes in BMI by parks and density

To visualize how BMI responds to park access at different levels of urban density, we used the
fully adjusted model to generate average adjusted predictions. For each chosen density level
(e.g., quartiles), we fixed density, varied park access, and predicted BMI for every observation

while holding other factors constant. We then averaged these predictions across individuals.
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2.7.2 Age-specific associations

To assess how the park-density interaction varies across childhood, we used sliding age windows.
For a window centered at age a days, we define w; ;) = 1if a child’s exact age in days lies within
+500 days of a; and 0 otherwise. For each a, advanced in 30-day increments, we estimated the
fully adjusted model on the full sample with an additional (triple) interaction that allows the

parks—density term to differ inside the window w:

ABML;j; = piAParks;;; + BrDensity;; + B3 (AParks X Density),;, + yX;

+ ¥4 (AParks;; x Density;; X w;q(;)) + neighborhood,. + child; + year, + &;;. (2)

To show age-specific associations, we then plot the age-specific interaction effect (83 + 94)

across the values of a.

2.7.3 Sensitivity analyses

We assessed sensitivity in four ways. First, we examined related anthropometric outcomes—z-
BMI, weight (kg), and z-weight—to evaluate consistency across adiposity measures. Second,
height is largely driven by genetics and long-run nutrition and should not respond to short-
run annual changes in parks. We therefore re-estimated the model with height and height-
for-age z-score as negative control outcomes, where non-null estimates would imply residual
confounding. Third, recognizing that large annual changes in parks are uncommon, we collapsed
the continuous measure to a binary indicator for any increase (from ¢t — 1 to t) as an alternative
specification. Fourth, we replicated the age-specific analyses with different window widths of
+365 and +730 days to assess sensitivity to the window size. We adjusted for tests of multiple

overlapping age windows with the Benjamini-Hochberg procedure.

3 Results

The sample includes 11,027 child-year observations from 1032 children across 15 years from

birth (Tab. 1). The oldest child-year observation in the sample period was 13.6 years old.
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Figure 2|Predicted changes in child BMI associated with changes in parks at different levels of urban density (top
panels) and age-specific estimates of the parks X density interaction (bottom panel). Panels (a)—(c) show predicted
BMI changes from a regression model that allows the interaction effect to differ by non-movers versus movers,
across quartiles of local urban density. Capped vertical lines are 95% confidence intervals based on clustered
standard errors.
Average yearly change in BMI was 0.3 kg/m? (SD 1.3). Similar to the global rise in prevalence, !,
the GUSTO prevalence of overweight and obesity has more than tripled over our observation
period (Fig. 1). Average yearly change in park access was 0.4 (SD 3.5) parks within a 15-minute
trip from the child’s residence. More than half the sample moved at least once across the 15
years, with 400 non-movers (38.7%), 425 (41.3%) who moved once, and 207 (20%) serial
movers. We did not observe a huge difference in the number of per-year change in park between
movers and non-movers (0.06 parks, 95% CI: [-0.06,0.17], p = .32), but movers were 5.2
percentage points (95% CI: [3.8,6.6], p < .001) more likely to experience an increase in parks.
In the fully adjusted model that accounts for location choice, fixed child effects, age, and
broad developmental trends, the parks-density estimated interaction was negative (83 = —0.021,
95% CI: [-0.033,-.009], p = .001; Tab. S1), indicating that increases in park access were
associated with lower BMI trajectories in higher-density areas, with minimal (or slightly positive
associations) in lower-density areas. At the mean urban density, one additional park was
associated with a—0.006 kg/m? lower BMI (95% CI: [-0.016,0.004], p = .24). The interaction
shows that park-BMI effect strengthens with density: a one-SD increase in park access (~3
parks) was associated with -0.005 lower BMI at the 25th percentile (offsetting 1.6% of annual
BMIl increase), -0.02 at the median (offsetting 6.6%), and -0.03 at the 75th percentile (offsetting
11.3%). The predicted margins illustrate diverging slopes across density quartiles (Fig. 2a).
As noted earlier, movers were more likely to experience park increases. In models with base-

line covariates only and without the density interaction (8, = 83 = 0), increases in park access

were associated with lower BMI (,@1 = —0.007, 95% CI: [-0.013, -0.000], p = .04; Tab. S1)
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Figure 3|Age-specific associations between park access, urban density, and BMI. Both panels report the same
series of rolling-window regressions (+500 days), in which the park—density interaction is re-estimated /repeatedly
for successive child-age intervals. Each point on the x-axis corresponds to a separate full-sample regression that
allows observations falling within an overlapping window around that age to have a different moderation effect.
Panel (a) Age-specific estimates of the park access X urban density interaction (Eq. (2)). Shaded regions show
90% and 95% confidence intervals clustered by child and planning area. Panel (b) Age-specific predicted change

in BMI from changes in parks at different levels of urban density.

After adjusting for location choice, this main effect became null. This attenuation suggests that,
without accounting for location choice, unadjusted averages may reflect neighborhood selection
rather than the underlying association between park access and BMI.

Nonetheless, the predicted margins stratified by non-movers versus movers showed similar
patterns in lower predicted BMI change with increases in parks at higher density, but clearer
gradients among non-movers (Figs. 2b to 2c).

We also examined age-specific heterogeneity in the park-density interaction, by estimating a

series of 154 fully-adjusted regressions using rolling age windows of +500 days (each window
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covering on average 1,759 (SD 354) child-year observations). The interaction was strongest
around ages 5—7 and 10-11 years, with 95% CIs excluding 0 in those bands and wider intervals
elsewhere (Fig. 3a). We did not observe abnormal jumps in residential relocation in those years
(Fig. S2). Predicted margins likewise showed greater BMI decrease in denser neighborhoods,
except around age 9 and after age 12 when the interaction effect attenuated or reversed (Fig. 3b).

The pattern implied by the park-density interaction was evident geographically. Aggregating
child-year predictions to neighborhoods after stratifying child-year observations by whether park
access increased or decreased, we observed steeper BMI reductions at higher levels of urban
density when parks increased, with the reverse pattern when parks decreased (Fig. 4). To
provide ground context for these associations, we mapped the terciles of urban density and
annual change in park access across all public residences, illustrating the combinations at a
higher spatial resolution (Fig. 5). Finally, we computed, for each residential postal point, the
predicted change in BMI from a one SD increase in park access, holding that point’s urban
density fixed. The postcode-level predictions were then averaged to the 0.1km? hexbins,
indicating that larger predicted BMI reductions clustered around pockets in the north-east, west,
and central regions where footfall is higher (Fig. 5, Fig. 6).

We explored other potential moderating effects of the park—density interaction with child
sex and geographical characteristics (five official planning regions, mature versus middle-aged
versus young areas), post-relocation year, and socioeconomic status. We found no heterogeneity
across those strata, except that post-relocation years attenuated the park-density measure towards
zero (Fig. S3).

Finally, we tested for sensitivity. First, we found similar patterns across related anthropo-
metric outcomes for z-BMI, weight, and z-weight, where higher urban density strengthened
the association between increases in parks and decreases in BMI (Tab. S2). Second, and as
placebo outcomes, height and z-height showed no such pattern (Tab. S2). Third, we found
similar patterns when we used a binary indicator for an increase in parks (Tab. S3). Fourth,
the age-specific patterns at years 5—7 and 10-11 persisted after correcting for multiple testing

(Fig. S1), and when we used different age windows (Fig. S4).
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change across child-year observations. Large blue points show the average across neighborhoods within each
density range; capped vertical lines indicate the standard errors of means. Bottom panels show the underlying
distribution of urban density. Selected neighborhoods are labeled with their planning area and region (CR = Central
Region, ER = East Region, NR = North Region, NER = North-East Region, WR = West Region).
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Figure 5|Spatial Distribution of Changes in Park Access and Footfall Density. Colors indicate the 3x3 tercile
combination of the two variables (low/medium/high for each), based on ~13,000 residential points.
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Figure 6[Spatial Distribution of Predicted BMI Changes from Park Access Improvements. Each hexbin is ~0.1
km?, color-coded by the predicted BMI change from a one standard deviation increase in park access, holding urban
density and all other factors constant. Graph transparency (« value) reflects urban density, with less populated
areas shown as more transparent (and vice versa).

4 Discussion

4.1 Principal findings

We constructed and analyzed a 15-year panel of annual child anthropometric measures from a
Singapore birth cohort, following 1,032 children from birth to adolescence for 11,027 child-
year observations. We linked the cohort residential histories to time-varying measures of park
access, computed from annual park zoning inventories and network-based travel time, and to
urban density, derived from GPS density traces. Using within-child comparisons, controls for
residential origins and destinations, and cluster-robust standard errors, we found that increases
in park access were associated with lower adiposity increases, but only in dense urban areas.
In models without the density interaction, park increases showed a negative association with
BMLI, but attenuated to null after accounting for location choice. Age-specific analyses revealed

that the park-density interaction is stronger around ages 5—7 and 10-11 years. These patterns

12

206

207

208

209

210

t

[39]
(9]

216

9
~



219

220

222

223

224

225

226

227

228

229

239

240

241

242

243

244

persisted across multiple anthropometric measures, but not for height as a placebo outcome.

4.2 Prior work

The literature on urban green spaces and child adiposity has found inconsistent evidence,

10,12—

including null or even adverse associations. 14 These differences are founded in how green

space is measured (e.g., vegetation, proximity, park counts, trees), %3 the prevalence of cross-

10,12,13,17,23,25,27-29 10,12-14,19,23

sectional settings, contextual modifiers, and bias from location

12.26,3843 Our findings speak to this heterogeneity by using network-based measures of

choice.
access to park parcels from annual land-use inventories, examining urban density as a contextual
modifier, and comparing within children in longitudinal models that follow them from birth into
early adolescence.

Prior cross-sectional>>>>?7~% and longitudinal studies’*?® found a protective association

1'7-31 and longitudinal ** stud-

with adiposity or cardiometabolic markers. Other cross-sectiona
ies found null associations. Without the density moderation and adjusting for an extensive set
of child and maternal baseline characteristics, we found the hypothesized protective associa-
tion. However, the first-order endogeneity concern is that families select into neighborhoods

that support their preferred healthy lifestyle.'%!%26-3%43 When we adjusted for such location

choices,® the protective association attenuated to null. '”

4.3 Pedestrian density as effect modifier

We found statistical evidence of the protective association in higher-density city blocks (ap-
proximately 315 m x 315 m if in square grids), which persisted after adjustment for location
choice. Density has been examined as a focal exposure or as an adjustment of the environmen-
tal context, %2426 but rarely as contextual moderators.>* A prior study found that vegetation
cover is associated with lower overweight risk only in towns categorized as high residential
density.?® Our study advances this evidence in five ways using: (1) a smooth measure of urban
density capturing pedestrian activity at a spatial resolution consistent with city blocks (rather
than binary strata across coarse administrative boundaries);*>** (2) a longitudinal panel with

repeated measures of both park access and anthropometric outcomes; (3) walking- and transit-
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based access to park parcels; (4) an explicit modeling of location choice;*® and (5) formally
testing the park—density interaction to directly quantify effect moderation.

A 14-city study found that urban density predicts higher accelerometer-measured physical
activity. '® Hence, high-footfall city blocks may capture urban activity and pedestrian-friendly
spaces, corresponding to higher walking and outdoor propensities that convert the dormant park
access into unstructured, ad-hoc visits to parks,?’ in ways beneficial to metabolic health. >’

We note that the exceptionally low crime rates in Singapore minimize concerns about a lack
of safety and natural surveillance in density cold spots, so lower effects there do not necessarily
capture higher neighborhood violence or crime.>> However, our findings do not preclude the
possibility that the park—density interaction captures a supply-side built environmental feature:
that parks around low-activity city blocks are more dilapidated.*** Another possible interpre-

tation is that parks around denser areas relate to livelier social spaces, where co-occupancy

creates informal activity hubs that encourage child outdoor play.

4.4 Age-specific effects

Prior reviews flagged age as a contextual factor, %> but studies examining age-related as-
sociations are rare. We leveraged the temporal resolution of the GUSTO cohort to examine
age-specific effects, finding that the park—density interaction was strongest around 5—7 and 10—
11 years. These periods coincide with developmental transitions in Singapore, when children
gain increasing independence in daily activities and mobility as they enter (age 7) and exit (age
12) primary school. The latter period also coincides with a sharp rise in overweight prevalence
among boys (Fig. 1). The attenuation during adolescence could reflect pubertal changes inde-
pendent of the environment, changes in structured activities (e.g., tuition, enrichment courses in
sports, arts, or music), or lack of late adolescent observations. Age 9-10 for GUSTO children
also coincided with the COVID-19 pandemic, a period where nearby parks might have par-
ticular strong protective effects when other structured activities ceased.'” The literature lacks

a clear prior for ages where associations are strongest, '*-?

so we interpret these patterns as
speculative. Nonetheless, they suggest that environmental associations are not static but vary

across developmental stages, a pattern that warrants further study.
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4.5 Implications

Holding urban density constant, the largest benefits from increasing park access accrued in
pockets within the central, northeastern, and western neighborhoods (Fig. 6) with moderate-
to-high urban density (Fig. 5). This pattern suggests that park investments are most effective
in denser areas with greater pedestrian activity, and that benefits are not uniform even within
the neighborhood boundaries typically used as units of policy planning. However, if the park—
density interaction captures poorer park quality in low-density areas, and vice versa,”>** then
directing funds toward high footfall city blocks could entrench inequalities.

Moreover, Singapore is dense, with a residential density of 8,300/km?2, and the urban density
measure implies a mean of 11,500/km?, comparable to cities such as New York (1 1,300/km?),
Tokyo (15,700/km2), and Barcelona (16,600/km2), but far above many North American cities,
such as Los Angeles (3,200/km2), Seattle (3,600/km2), and Toronto (4,400/km2). Hence, our
findings likely do not generalize to lower-density urban sprawls that are more car-dependent.

However, the principle of context-dependent environmental benefits should generalize
broadly. Prior inconsistent evidence might reflect such unexamined heterogeneities. '%-12-1423

Urban planners should therefore consider how parks interact with other environmental features

rather than as isolated interventions.

4.6 Limitations and Strengths

The park exposure measures align with time-budgeted access rather than straight-line Euclidean
proximity-based measures that ignore urban morphology and travel frictions. However, the land-
use inventories lack indicators of park programming and quality.'>'® The anonymized GPS
traces approximate lived experiences at a finer spatial scale, capturing pedestrian co-presence
and bustle near home, >3 but they may underrepresent the very young and very old.**
Anthropometric outcomes were measured longitudinally, but physical activity and actual
park use were not observed at comparable scales, so we lack direct behavioral evidence. '-1%14.19
The temporal resolution of the cohort measurements enabled us to examine age-specific effects.

But this is ultimately constrained by the data that ends when the children were about 13-14

years old (at the time of study), and therefore lacks comparisons through later adolescent years.

15

274

275

276

278

279

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300



306

307

309

315

316

Finally, repeated cohort measures of outcomes and parks enabled a longitudinal within-
child design with adjustment for observed neighborhood selection. These help account for
time-invariant family factors, health-seeking behavior, genetic predispositions, and location

choice.*® Nonetheless, our study remains observational,*® not experimental.**

4.7 Conclusion

Following an urban cohort from birth into early adolescence, we found that parks protect
against rising BMI in urban pockets with higher pedestrian activity. This context dependency
within neighborhoods implies that urban interventions cannot follow a one-size-fits-all approach.
Parks woven into active urban settings can be levers for health, but those in quieter areas may
remain untapped green spaces. Urban planning should therefore orchestrate built and social

environments together, rather than treating them as isolated levers.
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Table S1|Association between changes in park access and urban density on changes in BMI.

Dependent variable is yearly change in BMI

(1 @) (3) “)
Change in parks -0.007** -0.007 -0.006 -0.006
(0.003) (0.007) (0.005) (0.005)
[-0.013, - 0.000] [-0.022,0.007] [-0.017,0.004] [-0.016,0.004]
<p=.040> <p=.313> <p=.244> <p=.237>
Urban density —-0.030
(0.072)
[-0.176,0.117]
<p=.682>
(Change in parks) X (Urban density) -0.021***
(0.006)
[—0.033, — 0.009]
< p=.001 >
Mean BMI change 0.309 0.309 0.306 0.306
Std. dev. of change in parks 3.524 2.849 2.843 2.843
Std. dev. of density — — — 0.444
Maternal/child baselines v v v v
Origin/destination nbh FE v v v
Child FE v v
Year FE v v
Years 14 14 14 14
Neighborhoods 177 163 164 164
Planning areas (Cluster var. 1) 32 30 30 30
No. child observations (Cluster var. 2) 1032 815 835 835
No. child-year observations 11,027 8,475 8,658 8,658

Note: Change in parks is the yearly change in parks within 15 minutes of residence. Urban density is the rasterized
GPS traces (in thousands) per 0.1 km? hexagonal bin, mean-centered. Child baselines include age in days and sex.
Maternal baselines include age (at delivery), ethnicity, college education, low income, and place of birth. Columns
(2)—(4) cluster standard errors at the planning area level. Parentheses report standard errors clustered by child and
planning area. Square brackets report 95% CI. Angular brackets report p-values. Significance levels: * 0.1 ** 0.05

= 0.01.
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Table S2|Robustness of the association between park access and urban density across anthropometric

measures.
Dependent variable is yearly change in:
BMI zBMI Weight zWeight Height zHeight
()] (@) 3) (C)) (5) (6)
Change in parks —-0.006 —-0.000 —-0.008 —-0.002 0.007 -0.001
(0.005) (0.003) (0.008) (0.003) (0.009) (0.002)
[-0.016,0.004] [-0.007,0.006] [-0.024,0.007] [-0.007,0.004] [-0.011,0.026] [—0.004,0.002]
<p=.237> <p=.921> <p=.282> <p=.524> <p=.434> <p=.634>
Urban density —-0.030 —0.048 0.076 0.005 0.039 0.032
(0.072) (0.037) (0.088) (0.044) (0.222) (0.054)
[-0.176,0.117] [-0.124,0.028] [-0.104,0.256] [-0.084,0.095] [-0.416,0.493] [-0.079,0.143]
<p=.682> <p=.204> <p=.396> <p=.904> <p=.862> <p=.561>
(Change in parks) x (Urban density) —-0.021"* —-0.008** —-0.037"* -0.010** —-0.025 —-0.004
(0.006) (0.004) (0.013) (0.005) (0.023) (0.003)
[-0.033, - 0.009] [-0.016,-0.001] [-0.062,-0.011] [-0.020,-0.001] [-0.072,0.021] [-0.010,0.002]
< p=.001> <p=.025> < p=.007 > <p=.031> <p=271> <p=.183>
Height (cm) 0.143*
(0.013)
[0.117,0.169]
< p =.000 >
zHeight 0.107**
(0.017)
[0.072,0.142]
< p =.000 >
Mean BMI change 0.306 0.0441 3.343 0.0573 7.654 0.0316
Std. dev. of change in parks 2.843 2.843 2.843 3.028 2.843 2.843
Std. dev. of density 0.444 0.444 0.444 0.446 0.444 0.444
Maternal/child baselines v v v v v v
Origin/destination nbh FE v v v v v v
Child FE v v v v v v
Year FE v v v v v v
Years 14 14 14 11 14 14
Neighborhoods 164 164 164 161 164 164
Planning areas (Cluster var. 1) 30 30 30 29 30 30
No. child observations (Cluster var. 2) 835 835 835 835 835 835
No. child-year observations 8,658 8,658 8,658 6,561 8,658 8,658

Note: Change in parks is the yearly change in parks within 15 minutes of residence. For comparison, Column
(1) reproduces the same estimate for BMI from Column (4) from Tab. S1. The model for Weight (zWeight)
additionally adjust for Height (zHeight). All specifications are otherwise the same as Column (4) from Tab. S1.
Columns (2)—(4) cluster standard errors at the planning area level. Parentheses report standard errors clustered by
child and planning area. Square brackets report 95% CI. Angular brackets report p-values. Significance levels: *
0.1 0.05 ** 0.01.
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Figure S1|Age-specific parks-density interaction (with multiple hypotheses correction for Fig. 3). Markers indicate
estimates that remain statistically significant after applying Benjamini-Hochberg correction (BH correction) for
multiple testing: red circles denote significance at a 5% false discovery rate (FDR), while orange triangles indicate
significance at a 10% FDR.
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Table S3|Association of a binary indicator for increases in park access and urban density on changes in
BMI.

Dependent variable is yearly change in BMI

(1 2 (3) 4)
Increase in parks = 1 —-0.066" -0.038 -0.073* —-0.065*
(0.031) (0.038) (0.037) (0.033)
[-0.127,—-0.004] [-0.115,0.039] [-0.150,0.003] [-0.133,0.004]
<p=.037> <p=.321> <p=.059 > <p=.062 >
Urban density 0.031
(0.070)
[-0.112,0.174]
< p=.664 >
(Increase in parks = 1) X (Urban density) —0.274***
(0.075)
[-0.427, - 0.122]
< p=.001>
Mean BMI change 0.309 0.309 0.306 0.306
Share with park increase (= 1) 0.183 0.178 0.178 0.178
Maternal/child baselines v v v v
Origin/destination nbh FE v v v
Child FE v v
Year FE v v
Years 14 14 14 14
Neighborhoods 177 163 164 164
Planning areas (Cluster var. 1) 32 30 30 30
No. child observations (Cluster var. 2) 1032 815 835 835
No. child-year observations 11,027 8,475 8,658 8,658

Note: Increase in parks is a binary indicator for an having an increase in the number of parks within 15 minutes
compared to the previous year. All specification is otherwise the same as in Tab. S1. Parentheses report standard
errors clustered by child and planning area. Square brackets report 95% CI. Angular brackets report p-values.
Significance levels: * 0.1 ** 0.05 *** 0.01.
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Figure S2|Distribution of residential relocation by child age. Bars show the percentage of children with observed

changes in 6-digit postal code between consecutive years.
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Table S4|Crosswalk between Planning Areas and Towns/Estates’ age classifications.

Planning Area HDB Town/Estate Age Category Type
Punggol Punggol Young Town
Sembawang Sembawang Young Town
Sengkang Sengkang Young Town
Bishan Bishan Middle-aged Town
Bukit Batok Bukit Batok Middle-aged Town
Bukit Panjang  Bukit Panjang Middle-aged ~ Town
Bukit Timah Bukit Timah Middle-aged  Estate
Choa Chu Kang Choa Chu Kang Middle-aged Town
Hougang Hougang Middle-aged Town
Jurong East Jurong East Middle-aged Town
Jurong West Jurong West Middle-aged Town
Pasir Ris Pasir Ris Middle-aged Town
Serangoon Serangoon Middle-aged Town
Tampines Tampines Middle-aged Town
Woodlands Woodlands Middle-aged Town
Yishun Yishun Middle-aged Town
Ang Mo Kio Ang Mo Kio Mature Town
Bedok Bedok Mature Town
Bukit Merah Bukit Merah Mature Town
Clementi Clementi Mature Town
Downtown Core Central Area Mature Estate
Geylang Geylang Mature Town
Kallang Kallang/Whampoa Mature Town
Marine Parade = Marine Parade Mature Estate
Novena Kallang/Whampoa Mature Town
Outram Central Area Mature Estate
Queenstown Queenstown Mature Town
River Valley Central Area Mature Estate
Rochor Central Area Mature Estate
Singapore River Central Area Mature Estate
Tanglin Central Area Mature Estate
Toa Payoh Toa Payoh Mature Town
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Child sex Town/Estate Age Town vs. Estate Region Post-move Maternal Education ~ Maternal Income
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Figure S3|Moderations of the park—density interaction. Each panel plots the triple interaction coefficient(s) from
Eq. (1). Coefficients are the differential effect of park access X urban density across levels of each moderator.
Reference categories: girl, mature town (Tab. S4), town, West region, non-mover/pre-move observation, no college
degree, higher income (> SGD2000/month). Points show coefficient estimates with 95% confidence intervals.
Standard errors clustered by individual and planning area.
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Figure S4|Age-specific associations between park access, urban density, and BMI. Similar to Fig. 3 except with
rolling-window regressions of +365 days.

24



0.04
c
o
i
o P
GG 0.00 /R oo —— - —
c o
:g % W
7]
L
83 -0.041
£72
c®©
[N
® Age-specific estimates
£ g -0.08 (rolling windows of 1000 days)
0 95% Cl
90% ClI
'0.12 T T T T T T T
1y 3y 5y Ty 9y 11y 13y
Child age (days)
(a) Age-specific parks—density interaction
u.uZ
@ 0.01 4
o
c
©
=
O o 000~ T SR
e
m h
=
&= .0014
2
-O -
Q@ Urban density
& 02 25th percentile
50th percentile
75th percentile
-0.03 -+ r r r T T :
1y Jy oy My 13y

7y
Child age (days)
(b) Age-specific parks—density interaction

Figure S5|Age-specific associations between park access, urban density, and BMI. Similar to Fig. 3 except with
rolling-window regressions of +1000 days.
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