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Abstract

Background Cities shape child health. Effects are unlikely to be driven by a single feature,
but are likely influenced jointly by built and social environments.

Methods We investigated the interaction between increasing park accessibility and pedes-
trian density on child and adolescent adiposity in 1032 children across 15 years from the
Growing Up in Singapore Towards healthy Outcomes (GUSTO, 11,027 child-year obser-
vations, 2010–2024). Annual changes in park accessibility within a 15-minute commute
were computed using up-to-date governmental inventories. Pedestrian density was derived
from anonymized mobile phone GPS data, spatially smoothed to 0.1 km2 hexagons. We
modeled annual changes in BMI (kg/m2) from birth to early adolescence as a function of
changes in park access interacted with density using linear fixed-effect models, adjusting
for child, calendar year, and origin/destination neighborhood effects and two-way clustered
standard errors (child, geographical region).

Results Mean annual BMI gain was 0.3 kg/m2 (SD 1.3), consistent with expected child
growth. Overall, increasing park accessibility was associated with a −0.006 (95% CI:
[−0.016,−0.004]) annual BMI gain. However, the parks–density interaction was negative
(−0.021, 95% CI: [−0.033,−0.009]), implying different effects of parks access at differ-
ent pedestrian densities: One-SD increase in park access (∼3 parks) was associated with
−0.005, −0.02, and −0.03 kg/m2 at low (25th percentile), median, and high (75th per-
centile) density. Age-specific analyses indicate stronger park-density interactions at ages
5–7 and 10–11 years. Results were robust across sensitivity models and consistent across
weight-related anthropometric measures (BMI and weight z-scores).

Conclusion Environmental effects are highly context-dependent. In this urban cohort,
increases in park access were associated with lower BMI only in higher-density, higher-
footfall areas. Increasing parks in low-density areas may not realize the same benefit.



1 Background

Childhood obesity has quadrupled globally since 1990,1 with childhood overweight and obesity1 1

prevalence likely to reach 30% by 2030.2 Recent data suggests these trends accelerated during the2 2

2020 pandemic.2–4 Excess adiposity increases long-term risks, including metabolic disorders,3 3

cardiovascular diseases, and psychosocial difficulties that persist into adulthood.4–10 On current4 4

trends, the projected global economic cost will exceed US$4.3 trillion, or 3% of the world5 5

economy (equivalent to the 2020 pandemic shock).36 6

Given that 55% of children (∼1.5 billion) now live in cities,11 an important public health7 7

conversation has turned to how cities can create anti-obesogenic environments10,12–14 that8 8

buffer adverse adiposity effects from urbanization.2,11 A large body of work has established9 9

that neighborhood parks in urban spaces can promote outdoor play in children.14–19 Since play10 10

and physical activity directly buffer excess adiposity,20–22 neighborhood parks and green spaces11 11

have emerged as a natural lever for intervention.12 12

While some studies have found protective associations of urban green spaces and parks for13 13

adiposity and related cardiometabolic markers,23–29 many others report null or adverse associa-14 14

tions.10,12–14,17,30,31 These inconsistencies suggest that park effects are context-dependent. One15 15

such salient context is urban density: the level of pedestrian activity and foot traffic in daily lived16 16

experiences.32,33 Higher-density areas typically imply more amenity stops, greater walkability,17 17

and therefore a greater propensity for unstructured outdoor activities that spur spontaneous18 18

visits to parks.1619 19

Singapore, where childhood obesity mirrors global numbers in quadrupling (Fig. 1), is a20 20

well-suited testbed to examine how parks and urban pedestrian activity shape child adiposity. As21 21

a compact city-state with residential densities comparable to Tokyo and New York, Singapore22 22

maintains relatively egalitarian amenity distribution through public housing and ethnic integra-23 23

tion.34 Low crime rates minimize concerns about neighborhood safety that might complicate24 24

interpretations.35 Active urban planning translates into temporal variation in parks as neigh-25 25

borhoods are (re)developed over time. Finally, the Growing Up in Singapore Towards healthy26 26

Outcomes (GUSTO) cohort offers an opportunity to follow children from birth to age 14 (at the27 27

time of study), with repeated and objective anthropometric measurements and geographically28 28
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diverse residential histories that we can link to land use and density for within-child comparison29 29

over time.30 30

This study examined the protective association of neighborhood parks and whether urban31 31

density changes that association. Specifically, we tested whether living in high-footfall areas32 32

strengthens the inverse association between park access and adiposity measures, combining re-33 33

peated park and anthropometric measures with network-based travel-time data and anonymized34 34

mobile phone trace data in a longitudinal model.35 35

2 Methods36 36

2.1 Study population37 37

The study population is drawn from the Growing Up in Singapore Towards healthy Outcomes38 38

(GUSTO) cohort, a prospective mother-offspring birth cohort established in 2009. Pregnant39 39

women in their first trimester were recruited over the course of 2009–2010 from two major public40 40

maternity hospitals (KK Women’s and Children’s Hospital and National University Hospital).41 41

The study recruited 1247 pregnant women aged 20–50 years, mostly of Chinese, Indian, and42 42

Malay ethnicity (approximately 97% of ethnic composition).1 36 Eligibility criteria included43 43

being aged 18 or older, a Singapore citizen or permanent resident, and intending to reside44 44

locally for at least five years. Women were excluded if they had significant medical conditions45 45

(e.g., type 1 diabetes mellitus, psychosis). There were 1,177 deliveries, with an average annual46 46

attrition of approximately 3%, resulting in a population closer to 800 by 2020. Although not47 47

geographically representative by design, participant residences closely matched those of women48 48

aged 20–50 in the 2010 Census, with a correlation of 0.93 across neighborhoods.19,37 For this49 49

analysis, we used 15 years of follow-up data (2010–2024) from 1,032 children, contributing50 50

11,027 child-year observations (Tab. 1).51 51

1https://web.archive.org/web/20121021001924/https://www.singstat.gov.sg/pubn/popn/popu
lation2012b.pdf.
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Figure 1|Prevalence of overweight and obesity in Singapore based on NCD-RisC estimates and the GUSTO cohort.
Panel (a) NCD-RisC’s (NCD Risk Factor Collaboration) posterior mean prevalence for Singapore, 1990–2022, for
ages 5–19.1 The legend shows the percentage increase in prevalence from 1990 to 2022. Panel (b) GUSTO cohort
prevalence from birth. Dashed lines show age- and calendar-year matched series from the NCD-RisC estimates
for Singapore (same sex, same age, same year), where available. 2023 value in the NCD-RisC line is from 2022
data. No NCD-RisC estimates below 5.

2.2 Anthropometry52 52

Weight was measured using calibrated electronic scales and length/height using stadiometers53 53

(recumbent length < 24 months, standing height thereafter). Each record was linked to the54 54

child’s exact age in days, which is used to map to residence. To construct a regular child-55 55

year panel, all anthropometric measures were combined into a long dataset indexed by date.56 56

For years without a measure, values were linearly interpolated (no extrapolation) between the57 57

nearest observations. Age- and sex-standardized z-scores were derived using World Health58 58

Organization standards (Fig. 1).1959 59

2.3 Residential history60 60

Residential histories were constructed from the time-stamped postcode records collected during61 61

follow-up. Residential moving was defined by observed changes in postal code across follow-62 62
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Table 1|Overview of data

A. Sample

No. children (n) 1,032 —
No. years (n, range) 15 (2010–2024)
No. child-year observations (n) 11,027 —
Year obs. per child (mean, SD) 10.7 (3.5)
Avg. days between measures (mean, SD) 353.9 (36.6)
Non-movers (n, %) 400 (38.8)
Movers (n, %) 632 (61.2)

B. Main measures Mean (SD)

ΔNumber of parks within 15-minute trip 0.36 (3.51)
Urban density (0.1km2), 2020 GPS traces 1147.5 (1538.4)
ΔBMI (kg/m2) per year 0.30 (1.30)
ΔWeight (kg) per year 3.33 (2.70)
ΔHeight (cm) per year 7.61 (4.32)
BMI at age 5 (2015) 15.6 (2.1)
BMI at age 10 (2020) 18.6 (4.1)
BMI ≥ age 12 (2023/24) 20.0 (4.2)

C. Geography

No. Subzones (neighborhoods) 177 —
No. Planning areas (geographical cluster var.) 32 —
Avg. child per planning area per year (mean, SD) 26.4 23.4

up. We classified children as non-movers (400, 39%) and movers (632, 61%). Among movers,63 63

we identified serial movers (207, 20%) as those who moved twice or more within the 15 years.64 64

Multiple relocations within a relatively short timeframe may reflect a salient preference for65 65

location choice, raising stronger concerns about selection.38 Cognizant of this, fully adjusted66 66

models excluded serial movers to account for location choice.38 We assigned residence based67 67

on the closest residential record before the child’s birthday. Each residence was then geocoded68 68

to the spatial units, including planning areas, subzones (neighborhoods), and hexagonal cells69 69

used for exposure construction.70 70

2.4 Access to parks71 71

Annual measures of park access were derived by combining a government annual land use72 72

inventory of park parcels with high-resolution, network-based travel times. We first represented73 73

the city as a grid of 0.1km2 hexagonal cells (200 m edge length), restricting to approximately74 74

2.4k cells covering populated, on-land areas (excluding sea, water catchments, nature reserves,75 75
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and sparsely inhabited locations). We then enumerated 2.87 million centroid-to-centroid pairs76 76

and queried HERE Technologies’ routing engine for door-to-door travel durations, incorporating77 77

networks, walking infrastructure, and public-transport schedules. For each child-year residence78 78

(mapped to its postal-code hex cell), we identified all cells reachable within 15 minutes, con-79 79

sistent with ‘15-minute city’ frameworks emphasizing proximity to daily needs,39 and overlaid80 80

them with park parcels (public parks, gardens, and pedestrian green linkages). Park access was81 81

defined as the number of parks within this 15-minute catchment, recomputed annually to reflect82 82

contemporaneous land zoning and residence.3783 83

2.5 Urban pedestrian density84 84

We measure neighbourhood urban density using anonymised global positioning system (GPS)85 85

ping traces from CITYDATA.ai, aggregated over January–March 2020 (excluding Chinese New86 86

Year), with device IDs hashed and daily presence observed at the neighbourhood level.34,4087 87

To derive a spatially refined density measure, we areally interpolated GPS traces from the88 88

neighborhood polygons to a regular grid of ∼0.1 km2 hexagons (0.1 km2 ≈ 25 acres; width89 89

350 m ≈ 1,150 ft; ∼city block size).41 Before interpolation, hexagons were clipped to official90 90

neighborhood boundaries to avoid overlap with water bodies and other uninhabitable areas, and91 91

further masked using satellite-derived Copernicus Land Monitoring data to exclude non-urban92 92

land.42 For each hexagon, we then computed weekly median traces per hexagon and winsorized93 93

the top 1%. This urban density is time-invariant, under the assumption that neighborhood94 94

activity ranks remain stable over the sample period, but spatially varying at high resolution,95 95

capturing relative baselines of human presence and pedestrian activity across the city.96 96

2.6 Individual-level child and maternal covariates97 97

All models adjust for baseline maternal and child characteristics collected at recruitment. Ma-98 98

ternal covariates included age (at delivery), ethnicity (Chinese, Indian, Malay, Other), education99 99

(college vs. non-college), monthly household income (< 2000 vs. ≥ 2000 SGD), country of100 100

birth, housing type (public vs. private), and occupation. All models adjust for the child’s sex101 101

and age in days (from clinic visit dates).102 102
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2.7 Statistical Analyses103 103

We modeled the short-run, contemporaneous annual change in BMI as a function of the annual104 104

change in park access and urban density:105 105

ΔBMI𝑖 𝑗 𝑡 = 𝛽1ΔParks𝑖 𝑗 𝑡 + 𝛽2Density𝑖 𝑗 + 𝛽3 (ΔParks × Density)𝑖 𝑗 𝑡

+ 𝛾X𝑖 + neighborhood𝑖 𝑗 + child𝑖 + year𝑡 + 𝜀𝑖 𝑗 𝑡 , (1)

where 𝑖 indexes children, 𝑗 residential neighborhoods, and 𝑡 years. X𝑖𝑡 includes the child and106 106

maternal baselines (Section 2.6). 𝛽1 captures the association between a one-unit increase in park107 107

access and ΔBMI (evaluated at the reference mean density). 𝛽3 captures how the association108 108

between changes in park access and ΔBMI varies with urban density.109 109

To adjust for selection into neighborhoods for movers, we include fixed effects for their110 110

origin and destination neighborhoods, allowing families that come from or relocate to the same111 111

neighborhoods to have shared effects. We likewise adjust for the residing neighborhood for non-112 112

movers. child𝑖 control for time-invariant child and family-level factors. 𝜏𝑡 captures the broad113 113

developmental trends, with exact age adjusted separately (X𝑖𝑡). This structure compares within-114 114

child changes, holding constant neighborhood-specific unobservables and trends. Fully-adjusted115 115

models two-way cluster standard errors by child and planning area, recognizing that residuals116 116

are likely serially correlated within child (e.g., growth spurts, family history, routines) and117 117

correlated across children within the same areas (e.g., local amenities, school catchment). The118 118

key assumption is that any within-child changes in BMI resulting from unobserved factors related119 119

to changes in parks have been absorbed by shared developmental trends across time and age,120 120

neighborhood characteristics (including location choices), and child-specific predispositions.121 121

2.7.1 Predicting changes in BMI by parks and density122 122

To visualize how BMI responds to park access at different levels of urban density, we used the123 123

fully adjusted model to generate average adjusted predictions. For each chosen density level124 124

(e.g., quartiles), we fixed density, varied park access, and predicted BMI for every observation125 125

while holding other factors constant. We then averaged these predictions across individuals.126 126
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2.7.2 Age-specific associations127 127

To assess how the park-density interaction varies across childhood, we used sliding age windows.128 128

For a window centered at age 𝑎 days, we define𝑤𝑖,𝑎(𝑡) = 1 if a child’s exact age in days lies within129 129

±500 days of 𝑎; and 0 otherwise. For each 𝑎, advanced in 30-day increments, we estimated the130 130

fully adjusted model on the full sample with an additional (triple) interaction that allows the131 131

parks–density term to differ inside the window 𝑤:132 132

ΔBMI𝑖 𝑗 𝑡 = 𝛽1ΔParks𝑖 𝑗 𝑡 + 𝛽2Density𝑖 𝑗 + 𝛽3 (ΔParks × Density)𝑖 𝑗 𝑡 + 𝛾X𝑖

+ 𝛾𝑎
(
ΔParks𝑖𝑡 × Density𝑖 𝑗 × 𝑤𝑖,𝑎(𝑡)

)
+ neighborhood𝑖𝑐 + child𝑖 + year𝑡 + 𝜀𝑖 𝑗 𝑡 . (2)

To show age-specific associations, we then plot the age-specific interaction effect (𝛽3 + 𝛾̂𝑎)133 133

across the values of 𝑎.134 134

2.7.3 Sensitivity analyses135 135

We assessed sensitivity in four ways. First, we examined related anthropometric outcomes—z-136 136

BMI, weight (kg), and z-weight—to evaluate consistency across adiposity measures. Second,137 137

height is largely driven by genetics and long-run nutrition and should not respond to short-138 138

run annual changes in parks. We therefore re-estimated the model with height and height-139 139

for-age z-score as negative control outcomes, where non-null estimates would imply residual140 140

confounding. Third, recognizing that large annual changes in parks are uncommon, we collapsed141 141

the continuous measure to a binary indicator for any increase (from 𝑡 − 1 to 𝑡) as an alternative142 142

specification. Fourth, we replicated the age-specific analyses with different window widths of143 143

±365 and ±730 days to assess sensitivity to the window size. We adjusted for tests of multiple144 144

overlapping age windows with the Benjamini–Hochberg procedure.145 145

3 Results146 146

The sample includes 11,027 child-year observations from 1032 children across 15 years from147 147

birth (Tab. 1). The oldest child-year observation in the sample period was 13.6 years old.148 148
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(c) Movers
Figure 2|Predicted changes in child BMI associated with changes in parks at different levels of urban density (top
panels) and age-specific estimates of the parks × density interaction (bottom panel). Panels (a)–(c) show predicted
BMI changes from a regression model that allows the interaction effect to differ by non-movers versus movers,
across quartiles of local urban density. Capped vertical lines are 95% confidence intervals based on clustered
standard errors.

Average yearly change in BMI was 0.3 kg/m2 (SD 1.3). Similar to the global rise in prevalence,1,149 149

the GUSTO prevalence of overweight and obesity has more than tripled over our observation150 150

period (Fig. 1). Average yearly change in park access was 0.4 (SD 3.5) parks within a 15-minute151 151

trip from the child’s residence. More than half the sample moved at least once across the 15152 152

years, with 400 non-movers (38.7%), 425 (41.3%) who moved once, and 207 (20%) serial153 153

movers. We did not observe a huge difference in the number of per-year change in park between154 154

movers and non-movers (0.06 parks, 95% CI: [−0.06, 0.17], 𝑝 = .32), but movers were 5.2155 155

percentage points (95% CI: [3.8, 6.6], 𝑝 < .001) more likely to experience an increase in parks.156 156

In the fully adjusted model that accounts for location choice, fixed child effects, age, and157 157

broad developmental trends, the parks-density estimated interaction was negative (𝛽3 = −0.021,158 158

95% CI: [−0.033,−.009], 𝑝 = .001; Tab. S1), indicating that increases in park access were159 159

associated with lower BMI trajectories in higher-density areas, with minimal (or slightly positive160 160

associations) in lower-density areas. At the mean urban density, one additional park was161 161

associated with a –0.006 kg/m2 lower BMI (95% CI: [−0.016, 0.004], 𝑝 = .24). The interaction162 162

shows that park–BMI effect strengthens with density: a one-SD increase in park access (∼3163 163

parks) was associated with -0.005 lower BMI at the 25th percentile (offsetting 1.6% of annual164 164

BMI increase), -0.02 at the median (offsetting 6.6%), and -0.03 at the 75th percentile (offsetting165 165

11.3%). The predicted margins illustrate diverging slopes across density quartiles (Fig. 2a).166 166

As noted earlier, movers were more likely to experience park increases. In models with base-167 167

line covariates only and without the density interaction (𝛽2 = 𝛽3 = 0), increases in park access168 168

were associated with lower BMI (𝛽1 = −0.007, 95% CI: [−0.013,−0.000], 𝑝 = .04; Tab. S1)169 169
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Figure 3|Age-specific associations between park access, urban density, and BMI. Both panels report the same
series of rolling-window regressions (±500 days), in which the park–density interaction is re-estimated /repeatedly
for successive child-age intervals. Each point on the x-axis corresponds to a separate full-sample regression that
allows observations falling within an overlapping window around that age to have a different moderation effect.
Panel (a) Age-specific estimates of the park access × urban density interaction (Eq. (2)). Shaded regions show
90% and 95% confidence intervals clustered by child and planning area. Panel (b) Age-specific predicted change
in BMI from changes in parks at different levels of urban density.

After adjusting for location choice, this main effect became null. This attenuation suggests that,170 170

without accounting for location choice, unadjusted averages may reflect neighborhood selection171 171

rather than the underlying association between park access and BMI.172 172

Nonetheless, the predicted margins stratified by non-movers versus movers showed similar173 173

patterns in lower predicted BMI change with increases in parks at higher density, but clearer174 174

gradients among non-movers (Figs. 2b to 2c).175 175

We also examined age-specific heterogeneity in the park-density interaction, by estimating a176 176

series of 154 fully-adjusted regressions using rolling age windows of ±500 days (each window177 177

9



covering on average 1,759 (SD 354) child-year observations). The interaction was strongest178 178

around ages 5–7 and 10–11 years, with 95% CIs excluding 0 in those bands and wider intervals179 179

elsewhere (Fig. 3a). We did not observe abnormal jumps in residential relocation in those years180 180

(Fig. S2). Predicted margins likewise showed greater BMI decrease in denser neighborhoods,181 181

except around age 9 and after age 12 when the interaction effect attenuated or reversed (Fig. 3b).182 182

The pattern implied by the park-density interaction was evident geographically. Aggregating183 183

child-year predictions to neighborhoods after stratifying child-year observations by whether park184 184

access increased or decreased, we observed steeper BMI reductions at higher levels of urban185 185

density when parks increased, with the reverse pattern when parks decreased (Fig. 4). To186 186

provide ground context for these associations, we mapped the terciles of urban density and187 187

annual change in park access across all public residences, illustrating the combinations at a188 188

higher spatial resolution (Fig. 5). Finally, we computed, for each residential postal point, the189 189

predicted change in BMI from a one SD increase in park access, holding that point’s urban190 190

density fixed. The postcode-level predictions were then averaged to the 0.1 km2 hexbins,191 191

indicating that larger predicted BMI reductions clustered around pockets in the north-east, west,192 192

and central regions where footfall is higher (Fig. 5, Fig. 6).193 193

We explored other potential moderating effects of the park–density interaction with child194 194

sex and geographical characteristics (five official planning regions, mature versus middle-aged195 195

versus young areas), post-relocation year, and socioeconomic status. We found no heterogeneity196 196

across those strata, except that post-relocation years attenuated the park-density measure towards197 197

zero (Fig. S3).198 198

Finally, we tested for sensitivity. First, we found similar patterns across related anthropo-199 199

metric outcomes for z-BMI, weight, and z-weight, where higher urban density strengthened200 200

the association between increases in parks and decreases in BMI (Tab. S2). Second, and as201 201

placebo outcomes, height and z-height showed no such pattern (Tab. S2). Third, we found202 202

similar patterns when we used a binary indicator for an increase in parks (Tab. S3). Fourth,203 203

the age-specific patterns at years 5–7 and 10–11 persisted after correcting for multiple testing204 204

(Fig. S1), and when we used different age windows (Fig. S4).205 205
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Figure 4|Model-predicted change in BMI against urban density, stratified by increases in park access (Panel (a))
versus decreases in park access (Panel (b)). Each gray point represents a neighborhood’s average predicted BMI
change across child-year observations. Large blue points show the average across neighborhoods within each
density range; capped vertical lines indicate the standard errors of means. Bottom panels show the underlying
distribution of urban density. Selected neighborhoods are labeled with their planning area and region (CR = Central
Region, ER = East Region, NR = North Region, NER = North-East Region, WR = West Region).

Figure 5|Spatial Distribution of Changes in Park Access and Footfall Density. Colors indicate the 3×3 tercile
combination of the two variables (low/medium/high for each), based on ∼13,000 residential points.

11



Figure 6|Spatial Distribution of Predicted BMI Changes from Park Access Improvements. Each hexbin is ∼0.1
km2, color-coded by the predicted BMI change from a one standard deviation increase in park access, holding urban
density and all other factors constant. Graph transparency (𝛼 value) reflects urban density, with less populated
areas shown as more transparent (and vice versa).

4 Discussion206 206

4.1 Principal findings207 207

We constructed and analyzed a 15-year panel of annual child anthropometric measures from a208 208

Singapore birth cohort, following 1,032 children from birth to adolescence for 11,027 child-209 209

year observations. We linked the cohort residential histories to time-varying measures of park210 210

access, computed from annual park zoning inventories and network-based travel time, and to211 211

urban density, derived from GPS density traces. Using within-child comparisons, controls for212 212

residential origins and destinations, and cluster-robust standard errors, we found that increases213 213

in park access were associated with lower adiposity increases, but only in dense urban areas.214 214

In models without the density interaction, park increases showed a negative association with215 215

BMI, but attenuated to null after accounting for location choice. Age-specific analyses revealed216 216

that the park-density interaction is stronger around ages 5–7 and 10–11 years. These patterns217 217
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persisted across multiple anthropometric measures, but not for height as a placebo outcome.218 218

4.2 Prior work219 219

The literature on urban green spaces and child adiposity has found inconsistent evidence,220 220

including null or even adverse associations.10,12–14 These differences are founded in how green221 221

space is measured (e.g., vegetation, proximity, park counts, trees),10–13 the prevalence of cross-222 222

sectional settings,10,12,13,17,23,25,27–29 contextual modifiers,10,12–14,19,23 and bias from location223 223

choice.12,26,38,43 Our findings speak to this heterogeneity by using network-based measures of224 224

access to park parcels from annual land-use inventories, examining urban density as a contextual225 225

modifier, and comparing within children in longitudinal models that follow them from birth into226 226

early adolescence.227 227

Prior cross-sectional23,25,27–29 and longitudinal studies24,26 found a protective association228 228

with adiposity or cardiometabolic markers. Other cross-sectional17,31 and longitudinal30 stud-229 229

ies found null associations. Without the density moderation and adjusting for an extensive set230 230

of child and maternal baseline characteristics, we found the hypothesized protective associa-231 231

tion. However, the first-order endogeneity concern is that families select into neighborhoods232 232

that support their preferred healthy lifestyle.12,19,26,38,43 When we adjusted for such location233 233

choices,38 the protective association attenuated to null.19234 234

4.3 Pedestrian density as effect modifier235 235

We found statistical evidence of the protective association in higher-density city blocks (ap-236 236

proximately 315 m x 315 m if in square grids), which persisted after adjustment for location237 237

choice. Density has been examined as a focal exposure or as an adjustment of the environmen-238 238

tal context,16,24,26,31 but rarely as contextual moderators.23 A prior study found that vegetation239 239

cover is associated with lower overweight risk only in towns categorized as high residential240 240

density.23 Our study advances this evidence in five ways using: (1) a smooth measure of urban241 241

density capturing pedestrian activity at a spatial resolution consistent with city blocks (rather242 242

than binary strata across coarse administrative boundaries);32,33 (2) a longitudinal panel with243 243

repeated measures of both park access and anthropometric outcomes; (3) walking- and transit-244 244
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based access to park parcels; (4) an explicit modeling of location choice;38 and (5) formally245 245

testing the park–density interaction to directly quantify effect moderation.246 246

A 14-city study found that urban density predicts higher accelerometer-measured physical247 247

activity.16 Hence, high-footfall city blocks may capture urban activity and pedestrian-friendly248 248

spaces, corresponding to higher walking and outdoor propensities that convert the dormant park249 249

access into unstructured, ad-hoc visits to parks,37 in ways beneficial to metabolic health.20–22250 250

We note that the exceptionally low crime rates in Singapore minimize concerns about a lack251 251

of safety and natural surveillance in density cold spots, so lower effects there do not necessarily252 252

capture higher neighborhood violence or crime.35 However, our findings do not preclude the253 253

possibility that the park–density interaction captures a supply-side built environmental feature:254 254

that parks around low-activity city blocks are more dilapidated.23,44 Another possible interpre-255 255

tation is that parks around denser areas relate to livelier social spaces, where co-occupancy256 256

creates informal activity hubs that encourage child outdoor play.257 257

4.4 Age-specific effects258 258

Prior reviews flagged age as a contextual factor,10–12 but studies examining age-related as-259 259

sociations are rare. We leveraged the temporal resolution of the GUSTO cohort to examine260 260

age-specific effects, finding that the park–density interaction was strongest around 5–7 and 10–261 261

11 years. These periods coincide with developmental transitions in Singapore, when children262 262

gain increasing independence in daily activities and mobility as they enter (age 7) and exit (age263 263

12) primary school. The latter period also coincides with a sharp rise in overweight prevalence264 264

among boys (Fig. 1). The attenuation during adolescence could reflect pubertal changes inde-265 265

pendent of the environment, changes in structured activities (e.g., tuition, enrichment courses in266 266

sports, arts, or music), or lack of late adolescent observations. Age 9–10 for GUSTO children267 267

also coincided with the COVID-19 pandemic, a period where nearby parks might have par-268 268

ticular strong protective effects when other structured activities ceased.19 The literature lacks269 269

a clear prior for ages where associations are strongest,10–12 so we interpret these patterns as270 270

speculative. Nonetheless, they suggest that environmental associations are not static but vary271 271

across developmental stages, a pattern that warrants further study.272 272
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4.5 Implications273 273

Holding urban density constant, the largest benefits from increasing park access accrued in274 274

pockets within the central, northeastern, and western neighborhoods (Fig. 6) with moderate-275 275

to-high urban density (Fig. 5). This pattern suggests that park investments are most effective276 276

in denser areas with greater pedestrian activity, and that benefits are not uniform even within277 277

the neighborhood boundaries typically used as units of policy planning. However, if the park–278 278

density interaction captures poorer park quality in low-density areas, and vice versa,23,44 then279 279

directing funds toward high footfall city blocks could entrench inequalities.280 280

Moreover, Singapore is dense, with a residential density of 8,300/km2, and the urban density281 281

measure implies a mean of 11,500/km2, comparable to cities such as New York (11,300/km2),282 282

Tokyo (15,700/km2), and Barcelona (16,600/km2), but far above many North American cities,283 283

such as Los Angeles (3,200/km2), Seattle (3,600/km2), and Toronto (4,400/km2). Hence, our284 284

findings likely do not generalize to lower-density urban sprawls that are more car-dependent.285 285

However, the principle of context-dependent environmental benefits should generalize286 286

broadly. Prior inconsistent evidence might reflect such unexamined heterogeneities.10,12–14,23287 287

Urban planners should therefore consider how parks interact with other environmental features288 288

rather than as isolated interventions.289 289

4.6 Limitations and Strengths290 290

The park exposure measures align with time-budgeted access rather than straight-line Euclidean291 291

proximity-based measures that ignore urban morphology and travel frictions. However, the land-292 292

use inventories lack indicators of park programming and quality.12,13 The anonymized GPS293 293

traces approximate lived experiences at a finer spatial scale, capturing pedestrian co-presence294 294

and bustle near home,32,33 but they may underrepresent the very young and very old.34295 295

Anthropometric outcomes were measured longitudinally, but physical activity and actual296 296

park use were not observed at comparable scales, so we lack direct behavioral evidence.10–12,14,19297 297

The temporal resolution of the cohort measurements enabled us to examine age-specific effects.298 298

But this is ultimately constrained by the data that ends when the children were about 13–14299 299

years old (at the time of study), and therefore lacks comparisons through later adolescent years.300 300
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Finally, repeated cohort measures of outcomes and parks enabled a longitudinal within-301 301

child design with adjustment for observed neighborhood selection. These help account for302 302

time-invariant family factors, health-seeking behavior, genetic predispositions, and location303 303

choice.38 Nonetheless, our study remains observational,38 not experimental.43304 304

4.7 Conclusion305 305

Following an urban cohort from birth into early adolescence, we found that parks protect306 306

against rising BMI in urban pockets with higher pedestrian activity. This context dependency307 307

within neighborhoods implies that urban interventions cannot follow a one-size-fits-all approach.308 308

Parks woven into active urban settings can be levers for health, but those in quieter areas may309 309

remain untapped green spaces. Urban planning should therefore orchestrate built and social310 310

environments together, rather than treating them as isolated levers.311 311
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Table S1|Association between changes in park access and urban density on changes in BMI.
Dependent variable is yearly change in BMI

(1) (2) (3) (4)

Change in parks −0.007∗∗ −0.007 −0.006 −0.006
(0.003) (0.007) (0.005) (0.005)

[−0.013, − 0.000] [−0.022,0.007] [−0.017,0.004] [−0.016,0.004]
< 𝑝 = .040 > < 𝑝 = .313 > < 𝑝 = .244 > < 𝑝 = .237 >

Urban density −0.030
(0.072)

[−0.176,0.117]
< 𝑝 = .682 >

(Change in parks) × (Urban density) −0.021∗∗∗
(0.006)

[−0.033, − 0.009]
< 𝑝 = .001 >

Mean BMI change 0.309 0.309 0.306 0.306
Std. dev. of change in parks 3.524 2.849 2.843 2.843
Std. dev. of density — — — 0.444
Maternal/child baselines ✓ ✓ ✓ ✓
Origin/destination nbh FE ✓ ✓ ✓
Child FE ✓ ✓
Year FE ✓ ✓
Years 14 14 14 14
Neighborhoods 177 163 164 164
Planning areas (Cluster var. 1) 32 30 30 30
No. child observations (Cluster var. 2) 1032 815 835 835
No. child-year observations 11,027 8,475 8,658 8,658

Note: Change in parks is the yearly change in parks within 15 minutes of residence. Urban density is the rasterized
GPS traces (in thousands) per 0.1 km2 hexagonal bin, mean-centered. Child baselines include age in days and sex.
Maternal baselines include age (at delivery), ethnicity, college education, low income, and place of birth. Columns
(2)–(4) cluster standard errors at the planning area level. Parentheses report standard errors clustered by child and
planning area. Square brackets report 95% CI. Angular brackets report p-values. Significance levels: ∗ 0.1 ∗∗ 0.05
∗∗∗ 0.01.
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Table S2|Robustness of the association between park access and urban density across anthropometric
measures.

Dependent variable is yearly change in:
BMI zBMI Weight zWeight Height zHeight

(1) (2) (3) (4) (5) (6)

Change in parks −0.006 −0.000 −0.008 −0.002 0.007 −0.001
(0.005) (0.003) (0.008) (0.003) (0.009) (0.002)

[−0.016,0.004] [−0.007,0.006] [−0.024,0.007] [−0.007,0.004] [−0.011,0.026] [−0.004,0.002]
< 𝑝 = .237 > < 𝑝 = .921 > < 𝑝 = .282 > < 𝑝 = .524 > < 𝑝 = .434 > < 𝑝 = .634 >

Urban density −0.030 −0.048 0.076 0.005 0.039 0.032
(0.072) (0.037) (0.088) (0.044) (0.222) (0.054)

[−0.176,0.117] [−0.124,0.028] [−0.104,0.256] [−0.084,0.095] [−0.416,0.493] [−0.079,0.143]
< 𝑝 = .682 > < 𝑝 = .204 > < 𝑝 = .396 > < 𝑝 = .904 > < 𝑝 = .862 > < 𝑝 = .561 >

(Change in parks) × (Urban density) −0.021∗∗∗ −0.008∗∗ −0.037∗∗∗ −0.010∗∗ −0.025 −0.004
(0.006) (0.004) (0.013) (0.005) (0.023) (0.003)

[−0.033, − 0.009] [−0.016, − 0.001] [−0.062, − 0.011] [−0.020, − 0.001] [−0.072,0.021] [−0.010,0.002]
< 𝑝 = .001 > < 𝑝 = .025 > < 𝑝 = .007 > < 𝑝 = .031 > < 𝑝 = .271 > < 𝑝 = .183 >

Height (cm) 0.143∗∗∗
(0.013)

[0.117,0.169]
< 𝑝 = .000 >

zHeight 0.107∗∗∗
(0.017)

[0.072,0.142]
< 𝑝 = .000 >

Mean BMI change 0.306 0.0441 3.343 0.0573 7.654 0.0316
Std. dev. of change in parks 2.843 2.843 2.843 3.028 2.843 2.843
Std. dev. of density 0.444 0.444 0.444 0.446 0.444 0.444
Maternal/child baselines ✓ ✓ ✓ ✓ ✓ ✓
Origin/destination nbh FE ✓ ✓ ✓ ✓ ✓ ✓
Child FE ✓ ✓ ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓ ✓ ✓
Years 14 14 14 11 14 14
Neighborhoods 164 164 164 161 164 164
Planning areas (Cluster var. 1) 30 30 30 29 30 30
No. child observations (Cluster var. 2) 835 835 835 835 835 835
No. child-year observations 8,658 8,658 8,658 6,561 8,658 8,658

Note: Change in parks is the yearly change in parks within 15 minutes of residence. For comparison, Column
(1) reproduces the same estimate for BMI from Column (4) from Tab. S1. The model for Weight (zWeight)
additionally adjust for Height (zHeight). All specifications are otherwise the same as Column (4) from Tab. S1.
Columns (2)–(4) cluster standard errors at the planning area level. Parentheses report standard errors clustered by
child and planning area. Square brackets report 95% CI. Angular brackets report p-values. Significance levels: ∗

0.1 ∗∗ 0.05 ∗∗∗ 0.01.
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Figure S1|Age-specific parks-density interaction (with multiple hypotheses correction for Fig. 3). Markers indicate
estimates that remain statistically significant after applying Benjamini-Hochberg correction (BH correction) for
multiple testing: red circles denote significance at a 5% false discovery rate (FDR), while orange triangles indicate
significance at a 10% FDR.
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Table S3|Association of a binary indicator for increases in park access and urban density on changes in
BMI.

Dependent variable is yearly change in BMI

(1) (2) (3) (4)

Increase in parks = 1 −0.066∗∗ −0.038 −0.073∗ −0.065∗
(0.031) (0.038) (0.037) (0.033)

[−0.127, − 0.004] [−0.115,0.039] [−0.150,0.003] [−0.133,0.004]
< 𝑝 = .037 > < 𝑝 = .321 > < 𝑝 = .059 > < 𝑝 = .062 >

Urban density 0.031
(0.070)

[−0.112,0.174]
< 𝑝 = .664 >

(Increase in parks = 1) × (Urban density) −0.274∗∗∗
(0.075)

[−0.427, − 0.122]
< 𝑝 = .001 >

Mean BMI change 0.309 0.309 0.306 0.306
Share with park increase (= 1) 0.183 0.178 0.178 0.178
Maternal/child baselines ✓ ✓ ✓ ✓
Origin/destination nbh FE ✓ ✓ ✓
Child FE ✓ ✓
Year FE ✓ ✓
Years 14 14 14 14
Neighborhoods 177 163 164 164
Planning areas (Cluster var. 1) 32 30 30 30
No. child observations (Cluster var. 2) 1032 815 835 835
No. child-year observations 11,027 8,475 8,658 8,658

Note: Increase in parks is a binary indicator for an having an increase in the number of parks within 15 minutes
compared to the previous year. All specification is otherwise the same as in Tab. S1. Parentheses report standard
errors clustered by child and planning area. Square brackets report 95% CI. Angular brackets report p-values.
Significance levels: ∗ 0.1 ∗∗ 0.05 ∗∗∗ 0.01.
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Figure S2|Distribution of residential relocation by child age. Bars show the percentage of children with observed
changes in 6-digit postal code between consecutive years.
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Table S4|Crosswalk between Planning Areas and Towns/Estates’ age classifications.
Planning Area HDB Town/Estate Age Category Type
Punggol Punggol Young Town
Sembawang Sembawang Young Town
Sengkang Sengkang Young Town
Bishan Bishan Middle-aged Town
Bukit Batok Bukit Batok Middle-aged Town
Bukit Panjang Bukit Panjang Middle-aged Town
Bukit Timah Bukit Timah Middle-aged Estate
Choa Chu Kang Choa Chu Kang Middle-aged Town
Hougang Hougang Middle-aged Town
Jurong East Jurong East Middle-aged Town
Jurong West Jurong West Middle-aged Town
Pasir Ris Pasir Ris Middle-aged Town
Serangoon Serangoon Middle-aged Town
Tampines Tampines Middle-aged Town
Woodlands Woodlands Middle-aged Town
Yishun Yishun Middle-aged Town
Ang Mo Kio Ang Mo Kio Mature Town
Bedok Bedok Mature Town
Bukit Merah Bukit Merah Mature Town
Clementi Clementi Mature Town
Downtown Core Central Area Mature Estate
Geylang Geylang Mature Town
Kallang Kallang/Whampoa Mature Town
Marine Parade Marine Parade Mature Estate
Novena Kallang/Whampoa Mature Town
Outram Central Area Mature Estate
Queenstown Queenstown Mature Town
River Valley Central Area Mature Estate
Rochor Central Area Mature Estate
Singapore River Central Area Mature Estate
Tanglin Central Area Mature Estate
Toa Payoh Toa Payoh Mature Town
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Figure S3|Moderations of the park–density interaction. Each panel plots the triple interaction coefficient(s) from
Eq. (1). Coefficients are the differential effect of park access × urban density across levels of each moderator.
Reference categories: girl, mature town (Tab. S4), town, West region, non-mover/pre-move observation, no college
degree, higher income (> SGD2000/month). Points show coefficient estimates with 95% confidence intervals.
Standard errors clustered by individual and planning area.
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(a) Age-specific parks–density interaction

(b) Age-specific parks–density interaction
Figure S4|Age-specific associations between park access, urban density, and BMI. Similar to Fig. 3 except with
rolling-window regressions of ±365 days.
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Figure S5|Age-specific associations between park access, urban density, and BMI. Similar to Fig. 3 except with
rolling-window regressions of ±1000 days.
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