Social Proof is in the Pudding: The (Non)-Impact of
Social Proof on Software Downloads®

Lucas Shen' Gaurav Sood?

August 25, 2024

Abstract

Open-source software is widely used in commercial applications. Pair that with the
fact that when choosing open-source software for a new problem, developers often use
social proof as a cue. These two facts raise concern that bad actors can game social
proof metrics to induce the use of malign software. We study the question using two
field experiments. On the largest developer platform, GitHub, we buy ‘stars’ for a
random set of GitHub repositories of new Python packages and estimate their impact
on package downloads. We find no discernible impact. In another field experiment,
we manipulate the number of human downloads for Python packages. Again, we find
little effect.

Keywords: Field Experiment; RCT; GitHub; Security; Malware; Open-Source Soft-
ware; Social Proof

*You can download the replication materials from https://github.com/soodoku/social_proof_stars/.

tLucas is a Senior Scientist at the Institute for Human Development and Potential, Agency for Science,
Technology and Research, and can be reached at lucas@lucasshen.com

fGaurav can be reached at gsood07@gmail.com

http://github.com/soodoku/social_proof_stars
mailto:lucas@lucasshen.com
mailto:gsood07@gmail.com

1 Introduction

Most commercial software relies on open-source software. But vetting the quality of software
with respect to security is hard. Hence, most software developers use cheap heuristics like
social proof to choose between multiple open-source software that all purport to solve the
same problem. This raises the concern that bad actors can game social proof metrics to
induce developers to use malign software. In this paper, we explore this possibility using
two field experiments.

Our first field experiment was conducted on GitHub, the world’s largest developer
platform. On GitHub, we manipulated social proof of a random set of GitHub repositories
associated with new Python packages by buying ‘stars’ for them. For a random subset of
the treated repositories, we further increase the ‘stars’ by getting people in our network to
‘star’ the repositories. In all, our manipulation raises the median number of stars from 0 to
20-65 stars, depending on the treatment group. Such a dramatic increase in the number of
stars, however, has little impact on the number of package downloads. Three months after
the treatment, we cannot reject the null that the manipulation had no effect.

In a second field experiment, we manipulate social proof of Python packages by ma-
nipulating the download count in the official downloads registry. In particular, we use a
script to download a random set of Python packages multiple times. In all, the median
number of downloads more than triples from about 20 to 100 because of the treatment. But
there is little impact of the treatment on the number of downloads as many as three months
later.!

Our study allays but doesn’t dispel some of the concerns about the consequences of

!In the SI, we check if bot and human downloads Granger cause human downloads. Data
suggest human downloads cause future human downloads. But given it is inconsistent with

the experimental results, we are wary of reading too much into it.

inducing malware by gaming social proof. For one, a meaningful treatment effect may be
malign software being used by 1-2 organizations. And our experiments are underpowered
to detect such subtle effects. (In fact, it is nearly impossible to design experiments to detect
such effects.) For two, it is entirely plausible that a more intense treatment would do the

trick.

2 Social Proof

Others’ choices, especially those of similar others or those we admire, can be informative
(Cialdini, 2003; Messing and Westwood, 2014; Rao, Greve and Davis, 2001; Salganik, Dodds
and Watts, 2006; Venema et al., 2020; Amblee and Bui, 2011). They can tell us what is useful
or desirable. For instance, if someone is in the market for a car, they may pay attention
to the cars in the office parking lot. Companies understand the value of social proof and
regularly use it to try to influence customers. For instance, many companies prominently
show lists of customers who have bought their products on their websites. News media
companies and retailers like Amazon use social proof to aid consumer choice. For instance,
Amazon, for many product categories, allows customers to sort by best sellers. It also shows
how many customers bought a product from a particular seller over the last month or year.
News media companies show lists like ‘most read articles’ to aid consumers.

Social proof can be especially influential when people need to make a quick decision
or when acquiring information about the quality of a product is hard. Software is one such
case. It is hard for most developers to establish how safe software is quickly. Inspecting the
code takes time and skill. Hence, when choosing between multiple software programs that
purport to provide the same functionality, people often rely on social proof. To shed further
light on how manipulable developer’s choices are, we study whether certain kinds of social

proof affect the decision to download software.

In the first field experiment, we manipulate the number of “stars” on the world’s
largest software development platform, GitHub, and assess its impact on the number of
downloads of the associate package. In the second field experiment, we manipulate the

number of downloads of Python packages to assess its impact on future downloads.

3 GitHub Experiment

GitHub is the most popular platform for creating, storing, managing, and sharing code.
Over 100 million developers use GitHub. The platform hosts over 30M public repositories.
(A repository can be thought of as a folder. It generally contains code for a single project.)

GitHub provides various ways for a user to interact with a repository. Users can fork
or clone (copy) a repository, open an issue (to raise a concern about the code), and star
a repository. But users can’t use social proof metrics common to other social media, e.g.,
how often a repository is visited, etc., to judge which repository to interact with. GitHub,
however, prominently shows four other social proof signals: how often a repository has been
forked, the number of open issues that a repository has, the number of users watching a
repository, and the number of users who have starred it. The first two actions are uncommon
and hence irrelevant for most repositories. ‘Watching’ a repository is more common, but it
is still fairly infrequent because it is an expensive thing to do; ‘watching’ a repository means

Y

that you are alerted about all changes in the repository. Stars, an analog of “likes,” are the
most widely used form of social proof on GitHub.

Users star repositories for various reasons. First, some use it as a convenient book-
marking tool. Users can browse and search the repositories they have starred at any point.
(Recently, GitHub introduced a way to organize the repositories you ‘star,’” in line with the

curatorial purpose of ‘stars.”) Second, GitHub customizes a user’s news feed based on the

stars, e.g., recommending other repositories, showing news about consequential changes to

https://github.com/

the repository, etc. Third, some users ‘star’ a repository to disseminate information about
useful repositories to their followers. All the users who follow a user (and have enabled such
messages to be shown) see the repositories ‘starred’ by the users they follow in their news
feed. Lastly, users ‘star’ a repository to show support for a project or a user or to add to
the social proof.

Repository owners try hard to get people to ‘star’ their repositories to increase visi-
bility (and hence usage). As we noted above, one of the ways starring a repository increases
its visibility is by exposing followers of those who star a repository to it. The second way
it helps increase visibility is by increasing the odds of the repository becoming a trending
repository.? These trending repositories get additional attention, including from the media.
The third potential path of impact is via greater social proof. A person looking for software
may end up looking at the repository and may be persuaded by the number of ‘stars’ to
download the software.

Overall, the number of stars a repository is widely considered the primary signal of
its popularity. For this reason, it is the metric we intervene on. Our experiment’s effects can
be thought to come primarily from the path of greater social proof for two reasons. First,
our manipulation is small enough to not make a repository trend. Second, the repositories
on which we manipulate ‘stars’ are generated in a way so as not to map to the interests of
the users ‘starring’ the repository which means stars have limited informational value for the

followers.

?While GitHub now uses a combination of factors to determine trending repositories,
stars are generally suspected as a key factor. See for example https://github.com/

orgs/community/discussions/3083.

https://github.com/trending
https://github.com/trending
https://github.com/orgs/community/discussions/3083
https://github.com/orgs/community/discussions/3083

3.1 Sample and Randomization

Our population of interest is repositories associated with new Python packages. We focus on
new Python packages because we conjecture that quality is the least certain when a repository
is new. Hence, for a new repository, social proof provides the strongest signal. Our choice
of studying repositories associated with Python packages stems from the fact that we can
get reliable data on the number of downloads for a Python package. Our sample includes
new packages listed between 24 and 30 April 2023. (We identified new PyPI packages by
taking a set difference of the PyPI index on April 30 and April 24.) Of these packages, we
only keep Python packages with a public GitHub repository. (We used the GitHub source
URL from the package’s setup configuration file to link the package to a GitHub repository.)
In all, we identified 622 new packages with a public GitHub repository. Of the 622 public
repositories, we assigned 100 to the treatment group.

Table SI' 1.1 (column (1)) reports (pre-treatment) descriptive statistics of the packages.
Most new packages were created in 2022 but were released in 2023. 96% of the packages had
an open issue on GitHub. On average, a repository had been forked 20 times, and the user

under whom the repository was listed had, on average, 4 subscribers (Section 3.4).

3.2 Treatment Conditions

Our treatment includes stars from two sources: market-bought and network-based clicks.
We asked users in our network to ‘star’ the 100 repositories (Table SI 1.8). This group
serves as our ‘low dosage’ treatment group. The median number of followers of users in our
network who starred the treatment repositories was 9 (the mean was 64, Table SI 1.7). We
expect the benefits of these stars to also come primarily from greater social proof because
the repositories that the users starred did not focus on the interests and specializations of

the users. We triggered the friend requests to ‘star’ the repositories on May 12, 2023. Our

friends took about 10 days to ‘star’ all the 25 repositories (see Figure 1).

Of the 100 packages, we randomly selected 25 packages and bought 50 stars for each
from Baddhi Shop on May 12, 2023. The stars we bought from the vendor were assigned
over a few days, plausibly to avoid triggering GitHub’s anomaly detection algorithms. One
interesting feature of the stars bought on the market is that they were all from users whose
accounts were created around April 20, 2023. We expect some of these stars to be taken
down by GitHub integrity teams, so these stars likely only have a short-run impact. For
the stars we bought, we have no reason to expect the users who starred the repository or
their followers to be authentic. So, we only expect the benefits of these stars to accrue from

people who look at the GitHub repository before downloading a package.

3.3 Attrition and Analytic Strategy

About one week after the start of the intervention, on May 20, 2023, we took a snapshot of
the GitHub repository. By that time, we could only retrieve 582 repositories (Section 3.4).
Thirty-seven repositories in the control group and three from the treatment group were lost
because the GitHub repository was deleted or moved to private status. It is plausible that
the somewhat lower attrition in the treatment group is because the repository owners were
buoyed by seeing more stars.

Our primary estimand is Intent-To-Treat (ITT) effects on Python package downloads.
We use the entire dataset of 622 Python packages for that. In the SI, we also estimate the
Local Average Treatment Effect (LATE) that subsets on the compliers: Github repositories
for which we see a net increase of at least 20 stars during the treatment period. (Note that

some of the stars in the treatment period could be organic.)

https://web.archive.org/web/20240619193418/https://baddhi.shop/product/buy-github-followers/

3.4 Balance Tests

To confirm that the randomization was done correctly, we compare the means of various
attributes across the treatment and control groups. Looking at the primary outcome variable,
downloads, in the pre-treatment period, we find little difference between treatment and
control packages (see Table SI 1.3).

We supplemented this check with other balance tests that rely on GitHub data. We
did not take a snapshot of Github attributes before applying treatment. We only took a
snapshot of GitHub user characteristics linked to the PyPI packages on May 20 (Section 3.3).
So our balance tests that rely on GitHub data use post-treatment data, though one right at
the end of the treatment period. As we noted above, there was attrition between the start
and end of treatment.

Table SI 1.1 reports statistical summaries of various attributes of the Python packages
associated with treated and control repositories. Column (2) and column (3) report the
means and standard deviations (in parentheses) for packages in the control and treatment
groups, respectively. The last column reports the standardized mean difference. We compare
(a) repository size (in megabytes), (b) whether the repository is forked from a previously
existing repository, (c) the year of repository creation, (d) the number of subscribers, (e)
whether issues exist (or is enabled), (f) the number of forks into other repositories, (g)
the number of open issues, (h) the number of topics listed,® and (i) whether the primary
detected language is Python (not all Python packages have Python as the primary source
code language). As the table shows, except for two characteristics (the number of subscribers
and the number of forks), the treatment and control are statistically indistinguishable.

Tables SI 1.2 to SI 1.4 repeat the balance tests, making an additional split by dosage,

3Examples of topics from TensorFlow include “machine-learning,” “deep-neural-

PRAN14

networks,” “deep-learning,” “neural-network,” and “distributed.”

https://github.com/tensorflow/tensorflow

reaching similar conclusions.*

Another way to look at balance is in terms of user characteristics of repository owners.
There are 545 users behind the 582 repositories. Eight users appear in more than one group.
Table SI 1.5 reports whether users releasing treatment and control packages differ in how
they decorate their user profile by listing their company, email, personal webpage, and a brief
biography of themselves. Table SI 1.5 reports the difference in characteristics between these
developers of the treated and control packages.) In each instance, we detect no difference
between publishers of treatment and control.

Lastly, on May 20, we also took a snapshot of the PyPI Python package metadata: the
number of dependencies and package description length. The former was captured through
setup configuration files and the latter from the “readme” documentation or equivalent.
While these attributes were collected post-intervention, these constitute balance tests to the
extent that these characteristics are slow-moving. Tables SI 1.1 to SI 1.3 report differences

between treated and control groups.

3.5 Manipulation Check

While historical download logs are immutable, users can rescind stars. Anticipating that
bought stars might be flagged by GitHub and removed shortly after adding, we took a

snapshot of the stars of each package at the end of every day. This allows us to more

4High-dosage repositories and high-dosage users are different from the control group on
two aspects: high-dosage users have more gists (blogs/short code snippets) and are likelier to
list the company they work for at the 5 percent level (Table SI 1.6). Given that our groups
are randomly assigned, we ascribe these two statistically significant but substantively small

differences to chance.

Treated (high dos
-------- Treated (lopwrdosage)
60 Control
Treatmerft period

N

N
o

N
o

Number of GitHub Stars

11 May 15 May 19 May 23 May 27 May 31 May 4]Jun 8 Jun
Figure 1. Manipulation Check: GitHub Stars for Treated vs. Control. The figure plots

the median number of stars on a particular day for the three groups: high-dosage treatment (market
and network stars), low-dosage treatment (network stars), and control (no stars). In all, we plot
data for 585 packages and 17,550 package days. The shaded vertical bar indicates the period during
which the treatment was applied. Table SI 1.9 presents formal estimates of this manipulation check.
See Figure SI 1.1 for the figure that shows the means.

accurately capture the change in stars during our experiment period.’

Figure 1 shows the time trend of the median number of stars across the three groups:
high-dosage treatment (market and network stars; n = 25), low-dosage treatment (market
stars; n = 75), and control (no stars; n = 485). By the end of the intervention (May 21),
relative to the control group, the median number of additional stars in the low-dosage group

was 19 (p < .001), while the median number of additional stars in the high-dosage group
was 69 (p < .001, Table SI 1.9).

SHistorical stars with timestamps are available from the API but do not retain records

of removed stars.

3.6 Outcome Measure: PyPI Downloads

The primary outcome for both the field experiments, the GitHub experiment, and the PyPI
experiment (Section 4) is Python package downloads. These Python package download
metrics come from the centralized Python Package Index (PyPI) repository. It hosts open-
source Python packages uploaded to it by package developers. Users download packages as
needed from PyPI.

To log package downloads from PyPI, the Linehaul project implements a daemon
that listens for download events and logs them. Specifically, it tracks details like the package
name, date and time the package was downloaded, package version, and the type of installer
software. Linehaul then feeds the download logs to the publicly available Google BigQuery.
Some installers are known bots (Table SI 1.13). These bots tend to be caching mirrors for
distributional and security purposes. For instance, Bandersnatch is the official mirroring
service of PyPI to help improve accessibility and download speed for users of various geo-
graphical regions. We restrict the analysis to human downloads (Table SI 1.13). The main
analyses focus on differences in medians, given the huge volatility in means induced by a few

extreme outliers (Figures SI 1.2 to SI 1.4).

3.7 Results

Figure 2 traces the median number of PyPI downloads over time. We expect to see the
trajectory of the downloads change after the treatment but don’t see any evidence for it. The
ITT estimates from Table SI 1.10 confirm this observation. One month after intervention (on
June 21), the median number of downloads in the low-dosage and high-dosage groups were
statistically indistinguishable from the control group. We estimated differences in medians at
four more time points (over the next four months) but never found any significant difference

between the groups. We also estimated a model that allows treatment heterogeneity over time

10

https://github.com/pypi/linehaul-cloud-function

Treated (high dosage)
________ Treated (low dosage)

200 Control
Treatment period ===

) (May 12-21) /'
©
]
T 150
2
O
©
o
>
[a
45 100
o
Q
S
>
=2

50

0

28 Apr 23 May 17 Jun 12 Jul 6 Aug 31 Aug 25 Sep 20 Oct
Figure 2. Median PyPI Downloads for Treatment vs. Control in GitHub Experiment.

The figure plots the median of cumulative downloads for each of the three groups. Each point
is a day averaged within the group for 622 packages and 118,180 package days. Treatment is
distinguished by low and high dosage (see Section 3.1). The shaded vertical bar indicates the
treatment period. Downloads include only human downloads (Table SI 1.13). See also Figures SI
1.3 to SI 1.4 for the time series of individual packages. Table SI 1.10 reports estimates of differences
in medians. Figure SI 1.2 plots the means.

via a linear trend. Neither the low-dosage nor high-dosage group has a trend different from
that of the control group (see Table SI 1.10). In Appendix SI 1.1.7, we examine differences
in means and come to similar conclusions. We also estimate the LATE using the treatment

assignment as an instrument for compliance (receiving at least 20 stars, see Figure 1). The

mean differences in downloads for compliers are larger than the I'TT estimates, as anticipated,

11

but are non-significant (Table SI 1.12).% 7

4 PyPI Experiment

We experimentally manipulate human downloads and test the hypotheses that higher human

downloads lead to yet higher future human downloads.®

4.1 Design

We randomly sampled 50,000 packages from the PyPI repository and filtered to those with
at least five human downloads (Section 3.6). This left us with 23,916 packages. We then
randomly assigned 20% of the packages to the treatment group (n = 4,814) and the remain-
ing 80% to the control group (n = 19,102). For packages in the treatment group, we wrote
a script to download the same package 100 times. We downloaded the package in a way that

each download shows up in the official Linehaul numbers (Section 3.6).7. We treated the

SSubsetting downloads to just those installed by pip (Table SI 1.13), the most common

human installer yields similar answers.

"We also tested whether the manufactured stars in the treatment groups led to yet more

stars (above and beyond what we added) and find no evidence of this (untabulated).

$We also analyzed if human downloads Granger cause humans downloads (Appendix SI
1.3). We find that they do. But as we noted above, we are wary to read too much into the

results given they conflict with the experimental results.

“When installing packages, most user systems usually cache the source download files
(e.g., .tar.gz, etc.) on the local drive to save on bandwidth resources. Cognizant of this,
we wrote the script so that it installs packages without using the cached download directory.
This option forces the process to always download the package from PyPI instead of using

the cached source files.

12

packages between June 3, 2023 and June 8, 2023.

4.2 Results

Treated
125 oo Control
Treatment period
(June 3-8)
v 100
©
©
o
c
=
@]
S 75
o
>
o
Y
o -
g 0 /=T
Ee R e N |/ [R RO L S
= P tan
S _--"
2 T
25 PRt
0
19 May 27 May 4 Jun 12 jun 20 Jun 28 Jun 6 Jul 14 Jul 22 Jul

Figure 3. Median PyPI downloads for Treated vs. Control in the PyPI Experiment.
The figure shows trends in median daily downloads for the treated packages (n = 4,814) and
control group packages (n = 19,102) for 1,458,876 package-day observations. The shaded vertical
bar indicates the treatment period. Downloads include only human downloads (Table SI 1.13). See
Figure SI 1.5 for the same figure of mean downloads. Table SI 1.14 reports the estimates in the
differences in medians.

Figure 3 visualizes our results for the PyPI experiment. Downloads are extremely
volatile. To mute the effects of extreme outliers, we focus on the medians (as with Section 3).
Figure 3 plots medians for the treatment and control groups. Pre-treatment, little separates
the treatment and control groups. The treatment causes the daily median series for the
treatment and control group to diverge over the treatment period (June 3-8). On June 8,

the median treatment package has 83 more downloads relative to the control group (p < .001,

13

column (1) of Table SI 1.14). However, after the treatment application period, the difference
between the series is roughly constant. Treated packages, if anything, have a less sharp
slope than the control group; the median difference is .2 fewer downloads per day (p < .001,
column (2) of Table ST 1.14). The LATE estimates for compliers are no different (Table SI
1.15). Overall, providing social proof doesn’t appear to increase downloads of the treated

packages.

5 Discussion

Astroturfing using commercially bought stars on GitHub doesn’t help, plausibly, because the
users who like the repository have fake followers. We also see no evidence that additional
official Python downloads increase the number of Python packages downloaded. But we
are mindful of Carl Sagan’s famous aphorism: “The absence of evidence is not evidence of
absence.” It is plausible that the effect was too small to detect or that if the treatment
had been even more intense, it would have persuaded more people. The threat remains as
long as social proof metrics remain manipulable and people are insufficiently aware of their

manipulability.

14

References

Amblee, Naveen and Tung Bui. 2011. “Harnessing the influence of social proof in online
shopping: The effect of electronic word of mouth on sales of digital microproducts.” In-

ternational journal of electronic commerce 16(2):91-114.
Cialdini, Robert B. 2003. Influence. Influence At Work.

Messing, Solomon and Sean J Westwood. 2014. “Selective exposure in the age of social

media: Endorsements trump partisan source affiliation when selecting news online.” Com-

munication research 41(8):1042-1063.

Rao, Hayagreeva, Henrich R Greve and Gerald F Davis. 2001. “Fool’s gold: Social proof
in the initiation and abandonment of coverage by Wall Street analysts.” Administrative

science quarterly 46(3):502-526.

Salganik, Matthew J, Peter Sheridan Dodds and Duncan J Watts. 2006. “Experimental study
of inequality and unpredictability in an artificial cultural market.” science 311(5762):854—
856.

Seabold, Skipper and Josef Perktold. 2010. statsmodels: Econometric and statistical mod-

eling with python. In 9th Python in Science Conference.

Venema, Tina AG, Floor M Kroese, Jeroen S Benjamins and Denise TD De Ridder. 2020.
“When in doubt, follow the crowd? Responsiveness to social proof nudges in the absence

of clear preferences.” Frontiers in psychology 11:499433.

15

SI 1 Supporting Information

SI 1.1 GitHub Experiment

SI 1.1.1 Balance tests: GitHub repositories characteristics

Table SI 1.1. Balance tests: GitHub repositories characteristics

(1)

Full sample

(2)

Control packages

Treated packages

3)

3)-(2)

Pairwise t-test

Variable N Mean/(SE) N Mean/(SE) N Mean/(SE) N Normalized difference

Repository size 582 7.85 485 8.44 97 4.89 582 -0.14
(1.22) (1.43) (1.63)

Forked = 1 582 0.04 485 0.04 97 0.05 582 0.07
(0.01) (0.01) (0.02)

Year created 582 2022.31 485 2022.32 97 2022.28 582 -0.02
(0.08) (0.08) (0.20)

Subscribers 582 4.33 485 3.84 97 6.75 582 0.18%*
(0.54) (0.50) (2.02)

Has issues = 1 582 0.96 485 0.96 97 0.95 582 -0.05
(0.01) (0.01) (0.02)

Number of forks 582 19.87 485 15.22 97 43.12 582 0.18%*
(4.78) (3.92) (20.89)

Number of open issues 582 4.57 485 4.19 97 6.46 582 0.08
(1.14) (1.26) (2.67)

Number of topics listed 582 1.76 485 1.76 97 1.76 582 0.00
(0.14) (0.15) (0.35)

Python = 1 582 0.86 485 0.87 97 0.82 582 -0.13
(0.01) (0.02) (0.04)

Notes—Table reports the balance in GitHub repository characteristics between the treated and control
Python packages. Column (1) reports the mean of repository characteristics. Column (2) reports the mean
of the control packages. Column (3) reports the mean of the treated packages. Standard errors of the mean
are in parentheses. The last column reports the standardized mean difference. The repository size is in
megabytes. Forked indicates whether the repository was forked from another existing repository. Topics are
optional labels for a GitHub repository (e.g., web application, encryption, Python). Python = 1 indicates
Python is the primary detected language. See Table SI 1.2 for the same table with low and high dosage
treatments. See Table SI 1.3 for the same table reporting balance for package description and dependency
balance. Significance levels: ***p < .01;** p < .05;* p < .1.

16

Table SI 1.2. Balance tests: GitHub repositories characteristics (low-dosage and high-dosage

treatment groups vs. control)

) 2) 3) 2-(1) (3)-(1)
Control packages Treated (low dose) Treated (high dose) Pairwise t-test

Variable N Mean/(SE) N Mean/(SE) N Mean/(SE) N Normalized difference N Normalized difference

Repository size 485 8.44 73 4.43 24 6.28 558 -0.16 509 -0.09
(1.43) (1.98) (2.76)

Forked = 1 485 0.04 73 0.04 24 0.08 558 0.02 509 0.19
(0.01) (0.02) (0.06)

Year created 485 2022.32 73 2022.49 24 2021.63 558 0.10 509 -0.30%*
(0.08) (0.19) (0.55)

Subscribers 485 3.84 73 4.45 24 13.75 558 0.05 509 0.42%%*
(0.50) (1.63) (6.37)

Has issues = 1 485 0.96 73 0.96 24 0.92 558 0.00 509 -0.17
(0.01) (0.02) (0.06)

Number of forks 485 15.22 73 17.05 24 122.42 558 0.02 509 0.40%**
(3.92) (11.25) (76.12)

Number of open issues 485 4.19 73 3.64 24 15.04 558 -0.02 509 0.29*
(1.26) (1.70) (9.39)

Number of topics listed 485 1.76 73 1.84 24 1.54 558 0.02 509 -0.08
(0.15) (0.44) (0.49)

Python = 1 85 08T T3 0.82 24 0.83 558 -0.13 509 -0.10
(0.02) (0.05) (0.08)

Notes— Same as Table SI 1.1, except the treatment group is distinguished by low and high dosage treatment
packages (see Section 3.2). *** Significant at the 1 percent level. ** Significant at the 5 percent level. *
Significant at the 10 percent level.

17

SI 1.1.2 Balance tests: PyPI package characteristics

Table SI 1.3. Balance tests: PyPI package characteristics

1) (2) (3) (3)-(2)
Full sample Control packages Treated packages Pairwise t-test

Variable N Mean/(SE) N Mean/(SE) N Mean/(SE) N Normalized difference
Package description length 622 2458.61 522 2516.53 100 2156.24 622 -0.11

(143.49) (161.85) (287.41)
Package description length (cleaned) 622 2363.36 522 2416.14 100 2087.89 622 -0.10

(138.58) (156.14) (280.47)
Number of dependencies 622 3.73 522 3.60 100 4.36 622 0.10

(0.31) (0.34) (0.66)

Notes—Table reports the balance in PyPI package characteristics between the treated and control Python
packages. Column (1) reports the mean of repository characteristics. Column (2) reports the mean of the
control packages. Column (3) reports the mean of the treated packages. Standard errors of the mean are
in parentheses. The last column reports the standardized mean differences. Package description length is
the length of the (optional) package description, which can include instructions on installation and usage,
etc. These usually come from a Readme file. The description may have been marked up to be rendered in
HTML, so we do some basic cleaning of the raw text to convert HTML to text and report it in the table.
Number of dependencies is based on the number of requirements the package relies on. See also Table SI
1.1 for balance tests in GitHub repository characteristics. See Table SI 1.4 for the same table with low and
high-dosage treatments. Significance levels: ***p < .01;** p < .05;* p < .1.

Table SI 1.4. Balance tests: PyPI package characteristics (low-dosage and high-dosage treatment
groups vs. control)

) 2) ®3) (2)-(1) 3)-(1)

Control Treated (low) Treated (high) Pairwise t-test
Variable N Mean/(SE) N Mean/(SE) N Mean/(SE) N Normalized difference N = Normalized difference
Package description length 522 2516.53 75 2145.51 25 2188.44 597 -0.11 547 -0.11
(161.85) (351.09) (471.91)
Package description length (cleaned) 522 2416.14 75 2077.33 25 2119.56 597 -0.10 547 -0.10
(156.14) (342.40) (462.04)
Number of dependencies 522 3.60 75 4.55 25 3.80 597 0.13 547 0.03
(0.34) (0.77) (1.35)

Notes— Same as Table SI 1.3, except the treatment group is distinguished by low and high dosage treatment
packages (see Section 3.2). See also Table SI 1.1 and Table SI 1.2. Significance levels: ***p < .01;**p <
05 p < 1.

18

SI 1.1.3 Balance tests: GitHub user characteristics

Table SI 1.5. Balance tests: GitHub user characteristics

(1) (2) (3) (3)-(2)
Full sample Control packages Treated packages Pairwise t-test

Variable N Mean/(SE) N Mean/(SE) N Mean/(SE) N Normalized difference

Number of repositories 545 57.57 453 51.80 92 85.96 545 0.11
(12.88) (14.06) (32.05)

Number of gists 545 3.28 453 3.03 92 4.51 545 0.10
(0.56) (0.57) (1.72)

Number of followers 545 189.85 453 194.56 92 166.66 545 -0.02
(78.36) (93.34) (66.05)

Number of people followed 545 11.40 453 10.81 92 14.32 545 0.11
(1.44) (1.58) (3.45)

Year created 545 2017.33 453 2017.43 92 2016.86 545 -0.16
(0.16) (0.18) (0.36)

Year updated 545 2017.33 453 2017.43 92 2016.86 545 -0.16
(0.16) (0.18) (0.36)

Organization = 1 545 0.22 453 0.22 92 0.25 545 0.07
(0.02) (0.02) (0.05)

List company = 1 545 0.27 453 0.26 92 0.34 545 0.17
(0.02) (0.02) (0.05)

List email = 1 545 0.32 453 0.32 92 0.34 545 0.04
(0.02) (0.02) (0.05)

List personal site = 1 545 0.46 453 0.45 92 0.51 545 0.12
(0.02) (0.02) (0.05)

List brief bio = 1 545 0.48 453 0.47 92 0.51 545 0.08
(0.02) (0.02) (0.05)

Brief bio length 545 28.44 453 28.94 92 25.98 545 -0.08
(1.75) (1.95) (3.84)

Notes—Table reports the balance in GitHub user characteristics between the treated and control Python
packages. Column (1) reports the mean of user characteristics. Column (2) reports the mean of users
of the control packages. Column (3) reports the mean of users of the treated packages. Standard errors

of the mean are in parentheses.

The last column reports the standardized mean difference.

The year

created and year updated indicate when the GitHub user account was created and updated, respectively.
The organization indicates whether the package is hosted in an organization account. Brief bio length is
the number of characters in the (optional) biography. See Table SI 1.6 for the same table with low and
high-dosage treatments. Significance levels: ***p < .01;** p < .05;* p < .1.

19

Table SI 1.6. Balance tests: GitHub user characteristics (low-dosage and high-dosage treatment
groups vs. control)

)) 3 @-(1) (3)-(1)
Control Treated (low) Treated (high) Pairwise t-test

Variable N Mean/(SE) N Mean/(SE) N Mean/(SE) N Normalized difference N Normalized difference

Number of repositories 453 51.80 70 93.61 22 61.59 523 0.13 475 0.04
(14.06) (41.71) (19.73)

Number of gists 453 3.03 70 3.00 22 9.32 523 -0.00 475 0.28%*
(0.57) (1.09) (6.32)

Number of followers 453 194.56 70 103.07 22 369.00 523 -0.06 475 0.11
(93.34) (40.03) (244.44)

Number of people followed 453 10.81 70 16.80 22 6.41 523 0.17 475 -0.18
(1.58) (4.45) (2.21)

Year created 453 2017.43 70 2017.06 22 2016.23 523 -0.10 475 -0.32
(0.18) (0.40) (0.79)

Year updated 453 2017.43 70 2017.06 22 2016.23 523 -0.10 475 -0.32
(0.18) (0.40) (0.79)

Organization 453 0.22 70 0.26 22 0.23 523 0.09 475 0.02
(0.02) (0.05) (0.09)

List company 453 0.26 70 0.29 22 0.50 523 0.06 475 0.51%*
(0.02) (0.05) (0.11)

List email 453 0.32 70 0.34 22 0.32 523 0.05 475 -0.00
(0.02) (0.06) (0.10)

List personal site 453 0.45 70 0.47 22 0.64 523 0.04 475 0.37*
(0.02) (0.06) (0.10)

List brief bio 453 0.47 70 0.51 22 0.50 523 0.08 475 0.05
(0.02) (0.06) (0.11)

Brief bio length 453 28.94 70 23.84 22 32.77 523 -0.13 475 0.09
(1.95) (4.25) (8.69)

Notes—Same as Table SI 1.5, except the treatment group is distinguished by low and high dosage treatment
packages (see Section 3.1). Significance levels: ***p < .01;**p < .05;* p < .1.

20

SI 1.1.4 Organic GitHub Starrers

Table SI 1.7. Summary statistics of organic starrers’ GitHub characteristics

(1) (2)

Mean (s.d.) Median [IQR]

Public repositories 35 0 (49.2) 12.0 [6.0,61.0]
Public gists 4 (29.4) 0.0 [0.0,4.0]
Followers 63. 6 (160.4) O [1.0,17.0]
Following 34. 7 (90 5) 0 [0.0,20.0]
Account age (years) (5) [6 1,10.4]
Lists name 9 (0.4)

Lists company 4 (0.5) —

Lists blog/website 6 (0.5) —

Lists geographical location (O 5) —

Lists brief biography 5 (0.5) —

Lists Twitter handle 0 3 (0.5) —

Notes—Table shows summary statistics of the organic GitHub star givers listed in Table SI 1.8 (corresponding
to the high dosage treatment condition in the GitHub experiment, see Section 3.2). The last five rows are
indicator variables.

21

GG

Table SI 1.8. List of GitHub organic starrers

basharnaji
bmwhetter
BonaventureR
c-s-ale
chris-alexiuk
danweitzel
deepankermishra
dhingratul
dhruvarora-db
dwillis
humanpranav
khurramnasser
LSYS
Madhu009
NoahFinberg
pvbhanuteja
rajashekar
sharmaamits
sjhangianil2
soodoku

(1) 2) ®3) (4) (5) (6) (7)

Created Blog/website Brief profile biography =~ Repos Gists Followers Following
2014-05-14 9 0 9 10
2016-09-29 — My name is Brian Whetter and I graduated with a... 3 0 1 1
2017-09-20 bonaventureraj.me — 6 0 3 3
2016-06-02 ox.work Lover of Machine Learning, D&D, and Physics! 28 0 13 2
2022-09-26 — I work on Ox and FourthBrain, and a bunch of co... 19 0 10 0
2013-01-15 http://danweitzel.net — 11 5 13 25
2014-10-17 — — 5 0 5 9
2013-06-21 https://www.linkedin.com/in/dhingratul/ Machine Learning Engineer— Experienced research... 82 0 95 64
2021-07-20 — — 0 0 0 0
2008-03-04 http://thescoop.org/ I teach data journalism at the University of Ma... 208 134 705 130
2020-07-15 — Hello! 8 0 0 0
2012-07-09 — — 0 0 0 0
2015-01-13 https://www.lucasshen.com Applied econs — Data science — Quantitative soc... 13 4 17 407
2016-06-07 https://www.linkedin.com/in/madhusanjeeviai/ AT, Blockchain, Mobile Dev, Web Dev, 61 0 186 7
2014-08-27 domo.com Data App Innovation @ Domo. Former Co-founder &... 12 4 10 20
2017-10-30 bhanu.cyou — 61 12 1 0
2011-10-20 https://rajashekar.dev/ Software Engineer, Learner, Developer, Prokopton 67 9 23 33
2017-12-19 — — 1 0 0 0
2015-05-25 sharanjhangiani.com — 41 0 5 8
2011-04-11 http://www.gsood.com 93 29 239 10

Notes—Table lists the 20 organic GitHub star givers (corresponding to the high dosage treatment condition in the GitHub experiment, see
Section 3.2). See Table SI 1.7 for summary statistics of these starrers.

SI 1.1.5 Manipulation check

Table SI 1.9. GitHub Experiment: Manipulation Check.

(1)

(2)

3)

(4)

Difference in medians

Outcome variable is: GitHub stars

Difference in means

On May 12 On May 21 On May 12 On May 21
Treatment (low dosage) 0.00 20.00*** —0.27 18.43**
(0.27) (0.27) (2.76) (2.55)
[-0.52t00.52] [19.48 to 20.52] [—5.69 to 5.15] [13.41 to 23.44]
< p=1.000 > < p=0.000 > <p=0.923 > < p=0.000 >
Treatment (high dosage) 0.00 69.00*** 6.87 62.15"**
(0.87) (0.87) (6.81) (4.57)
[-1.70t0 1.70] [67.30to 70.70] [—6.52 to 20.25] [53.16 to 71.13]
< p=1.000 > < p=0.000 > <p=0.314 > < p=0.000 >
Constant 0.00 0.00 8.41%* 8.69**
(0.10) (0.10) (1.07) (1.08)
[—0.19 to 0.19] [—0.19 to 0.19] [6.31 to 10.52] [6.58 to 10.81]
< p=1.000 > < p=1.000 > < p=0.000 > < p=0.000 >
Median/Mean of outcome 0.0 1.0 8.7 13.7
Package observations 585 585 585 585
Day observations 1 1 1 1
Package-day observations 585 585 585 585

Note: The table presents manipulation checks for the treatment variable: GitHub stars by presenting differ-
ences in medians and means for the treatment and control groups. Column (1) reports differences in medians
at the start of treatment (May 12). Column (2) reports differences in medians at the end of treatment (May
21). Columns (1)—(2) correspond to Figure 1. Columns (3)—(4) report differences in means, corresponding
to Figure SI 1.1. Section 3.2 describes the high- and low-dosage treatment conditions. Standard errors are
clustered by packages. Parentheses: standard errors. Square brackets: 95% confidence intervals. Angle
brackets: p-values. Significance levels: T 0.1 * 0.05 ** 0.01 *** 0.001.

23

-------- Treated (I
Control

Treatm
(May

60

Number of GitHub Stars
I
o

L~

N
o

11 May 15 May 19 May 23 May 27 May 31 May 4 Jun 8 Jun
Figure SI 1.1. Manipulation Check: GitHub Stars for Treated vs. Control. Same as

Figure 1, except in means. The figure reports the means version of Figure 1. The figure plots the
mean number of stars on a particular day for the three groups: high-dosage treatment (market and
network stars), low-dosage treatment (market stars), and control (no stars). In all, we plot data for
585 packages and 17,550 package days. The shaded vertical bar indicates the period during which
the treatment was being applied. Table SI 1.9 presents estimates of the impact of treatment on
downloads.

24

SI 1.1.6 Differences in medians

Table SI 1.10. GitHub Experiment Results - ITT estimates for medians.

1 2 ®3) (4) (5) (6)
Outcome variable is: PyPI downloads
On Jun 21 On Jul 21 On Aug 21 On Sep 21 On Oct 21 Full post period
Treatment (low dosage) 8.0 25.0 28.0 20.0 20.0 10.3
(17.4) (24.7) (28.6) (32.5) (32.5) (7.7)
[-26.2t0422] [-234t073.4] [-28.1to84.1] [-43.9t083.9] [-43.9t083.9] [—4.8t025.3]
<p=0646> <p=0311> <p=0328> <p=0539> <p=0539> <p=0.183>
Treatment (high dosage) 14.0 24.0 7.0 -7.0 —7.0 20.0
(50.7) (50.0) (50.7) (49.3) (49.3) (16.3)
[—85.7t0113.7] [-74.3t0122.3] [-92.6t0106.6] [—103.9t089.9] [-103.9t089.9] [-11.8t051.9]
<p=0783> <p=0632> <p=0890> <p=08T7> <p=0.887> <p=0.218 >
Linear trend 0.7
(0.0)
[0.6 t0 0.8]
< p=0.000 >
Treatment (low dosage) x Linear trend 0.2
(0.4)
[—0.6 t0 0.9]
<p=0.695 >
Treatment (high dosage) x Linear trend -0.1
(0.7)
[—1.5t0 1.3]
<p=0910 >
Constant 84.0* 98.0"** 119.0"** 140.0*** 140.0*** 56.8"**
(4.8) (6.3) (8.2) (10.0) (10.0) (4.1)
[74.6 t0 93.4] [85.5t0110.5] [103.0to 135.0] [120.4 to 159.6] [120.4 to 159.6] [48.6 to 64.9]
<p=0.000> <p=0.000> <p=0.000> <p=0.000> <p=0.000> <p=0.000>
Median of outcome 86.0 103.5 125.0 141.0 141.0 112.0
Package observations 622 622 622 622 622 622
Day observations 1 1 1 1 1 165
Package-day observations 622 622 622 622 622 102, 630

Note: The table presents Intention-to-Treat (ITT) estimates for median downloads in the GitHub experiment.
Corresponds to Figure 2. Columns (1)—(5) report snapshots of the difference in medians at various dates.
Column (6) reports post-treatment differences in medians over the full post-treatment period of 165 days,
allowing for heterogeneous treatment effects through a linear time trend. Parentheses: standard errors.
Square brackets: 95% confidence intervals. Angle brackets: p-values. Significance levels: ***p < .001;*** p <

01 p < .05;7 p < 1.

25

SI 1.1.7 Differences in Means

While there appears to be a break in trend in Figure SI 1.2, we note three additional time
series behaviors. First, the within-group variance is large, as will be evident in the estimates
(Table SI 1.11). Second, this, at least in part, can be explained by a few extreme outliers
(Figures SI 1.3 to SI 1.4). Third, and relatedly, we do not observe a similar trend break for
the medians (Figure 2).

Table SI 1.14 reports the ITT estimates. Approximately one month after intervention,
on June 21, the low-dosage group’s mean download tally is no higher than the control
group (p = .051), while the high-dosage group’s download tally is higher but statistically
indistinguishable from the control group (p = .495, Table SI 1.11). Three months after
intervention (on August 21), the low-dosage group’s mean download tally is 1,180 lower
than the control group (p = .069), while the high-dosage group’s download tally is 7k higher
than the control group (p = .388), with the standard errors of the estimates always in the
same order of magnitude as the estimates (Table SI 1.11). We also estimate a model that
allows the treatment effect to vary over time (column (6) of Table SI 1.11). Neither the
low-dosage nor high-dosage group has a trend different from the control group. If anything,
the low-dosage treatment group has a weaker trend than the control group (p = .066).

The figure plots the median of cumulative downloads for each of the three groups.
Each point is a day averaged within the group for 622 packages and 118,180 package days.
Treatment is distinguished by low and high dosages (see Section 3.1). The shaded vertical
bar indicates the treatment period. Downloads include only human downloads (Table SI
1.13). See also Figures SI 1.3 to SI 1.4 for the time series of individual packages. Table SI
1.10 reports estimates of differences in medians. Figure SI 1.2 plots differences in means of

cumulative downloads by groups.

26

Treated (high dosage)
________ Treated (low dosage)

20,000 Control
Treatment period
) (May 12-21)
©
3
—= 15,000
=
o
©
o
>
o
« 10,000
o
—
()
Ko}
S
=}
=2
5,000
0

28 Apr 23 May 17 Jun 12 Jul 6 Aug 31 Aug 25 Sep 20 Oct
Figure SI 1.2. Mean PyPI downloads for Treated vs. Control in GitHub Experiment.

Same as Figure 2, except for means. The figure plots the mean of cumulative downloads for each
of the three groups. Each point is a day averaged within the group for 622 packages and 118,180
package days. Treatment is distinguished by low and high dosages (see Section 3.1). The shaded
vertical bar indicates the treatment period. Downloads include only human downloads (Table SI
1.13). See also Figures SI 1.3 to SI 1.4 for the time series of individual packages. Table SI 1.11
reports estimates of differences in medians.

27

Table SI 1.11. GitHub Experiment Results - ITT estimates for means.

(1) [©)) ®3) (4) (5) (6)
Outcome variable is: PyPI downloads
On Jun 21 On Jul 21 On Aug 21 On Sep 21 On Oct 21 Full post period
Treatment (low dosage) —260.1" —743.3% —1,180.3% —1,595.5" —2,101.2% -12.0
(132.8) (424.7) (648.3) (855.0) (1,135.2) (76.4)
[—520.8 t0 0.6] [=1,577.4t0 90.8] [—2,453.5 t0 92.9] [—3,274.6 to 83.5] [—4,330.4 to 128.1] [—162.0 to 138.0]
<p=0.051 > <p=0.081 > < p=10.069 > <p=0.062 > <p=0.065 > <p=0.875>
Treatment (high dosage) 679.6 3,727.3 7,035.0 11,2135 17,550.9 —2,303.5
(995.8) (4,496.9) (8,150.4) (12,796.6) (19,813.3) (2,202.8)
[~1,276.0t0 2,635.2] [—5,103.8 to 12, 558.3] [—8,970.8 to 23,040.8] [—13,916.4 to 36,343.4] [—21, 358.5 to 56,460.3] [—6,629.4 to 2, 022.4]
<p=0495 > <p=0408 > <p=0388> <p=0381> <p=0376> <p=0296>
Linear trend 15.9*
(7.1)
[2.0t0 29.9]
<p=0.025>
Treatment (low dosage) x Linear trend —13.2*
(7.1)
[—27.2t00.9]
< p=10.066 >
Treatment (high dosage) x Linear trend 116.0
(124.3)
[—128.2 t0 360.1]
<p=0.351 >
Constant 406.7** 1,022.0* 1,543.0* 2,043.8* 2,643.2* 123.6"
(127.3) (419.1) (641.5) (846.6) (1,126.5) (70.6)
[156.8 to 656.6] [198.9t0 1,845.1] [283.1 to 2,802.9] [381.2 to 3,706.3] [431.0to 4,855.4] [~15.0 t0 262.2]
<p=10.001> <p=0.015> <p=0.016 > <p=0.016 > <p=0.019> < p=0.080 >
R? 0.00333 0.00648 0.00880 0.0113 0.0137 0.0140
Mean of outcome 402.7 1,082.2 1,683.4 2,302.1 3,095.3 1,586.5
Package observations 622 622 622 622 622 622
Day observations 1 1 1 1 1 165
Package-day observations 622 622 622 622 622 102,630

Note: Similar to Table SI 1.10, but for differences in means. The table presents Intention-to-Treat (ITT)
estimates for mean downloads in the GitHub experiment. Corresponds to Figure SI 1.2. Columns (1)—(5)
report snapshots of the difference in mean at various dates. Column (6) reports post-treatment differences in
means over the full post-treatment period of 165 days, allowing for heterogeneous treatment effects through a
linear time trend. Parentheses: standard errors. Square brackets: 95% confidence intervals. Angle brackets:
p-values. Significance levels: ***p < .001;*** p < .01;** p < .05;" p < .1.

28

600,000 ' —— Treated (high dosage)
Treated (low dosage)
...................... Contr0|

[%2]
K Treatment period
(]
2 T (May 12-21)
S 400,000
[®)
©
o
>
[a
kS
2 200,000
S
>
=
0 L

28 Apr 23 May 17 Jun 12 jul 6 Aug 31 Aug 25 Sep 20 Oct
Figure SI 1.3. Individual PyPI downloads for treated vs control. Similar to Figure SI

1.2, but with the time series of the individual packages.

29

125,000 —— [Ireated (high dosage)
Treated (low dosage)
...................... Contr0|

[V}
'S 100,000 - Treatment period
o _
= (May 12-21)
5
S 75,000
o
>
[a
Y
© 50,000
—
(O]
O
e
S5 L B ettt eerssaaneneeentl]
Z 25,000
0

28 Apr 23 May 17 Jun 12 Jul 6 Aug 31 Aug 25 Sep 20 Oct
Figure SI 1.4. Individual PyPI downloads for treated vs control. Similar to Figure SI

1.3, but without the top two extreme time series.

Table SI 1.12. GitHub Experiment Results - LATE estimates for means.

M 2) ®3) O] (5) (6)
Outcome variable is: PyPI downloads
On Jun 21 On Jul 21 On Aug 21 On Sep 21 On Oct 21 Full post period
Received treatment 213.9 859.3 1,963.1 3,660.5 6,317.4 —1,299.7
(1,347.3) (2,662.2) (4,660.9) (7,275.5) (11,067.7) (1,245.9)
[—2,426.8 to 2,854.7] [—4,358.5t06,077.1] [—7,172.1to 11,098.3] [—10,599.3 to 17,920.2] [—15,375.0 to 28,009.7] [—3,741.6 to 1, 142.2]
<p=0.874> <p=0.747 > <p=0.674> <p=0.615> < p=0.568 > <p=0297 >
Linear trend 15.9*
(7.1)
[2.0 t029.8]
<p=0.025 >
Received treatment x Linear trend 42.5
(71.4)
[-97.5 to 182.5]
<p=0.552 >
Constant 655.7* 1,041.0* 1,556.9* 2,066.6* 2,664.7* 123.6"
(249.4) (429.5) (645.6) (856.4) (1,135.8) (70.5)
[166.9 to 1, 144.4] [199.2 to 1, 882.8] [291.5 to 2,822.2] [388.0 to 3, 745.2] [438.6 to 4,890.9] [—14.6 to 261.8]
< p=0.009 > < p=0.015> < p=0.016 > <p=0.016 > <p=0.019 > < p=0.080 >
Mean of outcome 671.2 1,103.2 1,698.9 2,331.4 3,121.8 1,586.5
Package observations 622 622 622 622 622 622
Day observations 1 1 1 1 1 165
Package-day observations 622 622 622 622 622 102,630

Note: The table presents Local Average Treatment Effect (LATE) estimates for mean downloads in the
GitHub experiment. Compliers (those who “Received treatment”) are defined as those receiving at least
20 stars at the end of the treatment window. LATE estimates are from instrumental variable regressions,
instrumenting compliers with the random treatment assignment. Corresponds to Figure SI 1.2. Columns
(1)—(5) report snapshots of the difference in mean at various dates. Column (6) reports post-treatment
differences in means over the full post-treatment period of 165 days, allowing for heterogeneous treatment
effects through a linear time trend. Parentheses: standard errors. Square brackets: 95% confidence intervals.
Angle brackets: p-values. Significance levels: ***p < .001;***p < .01;**p < .05; T p < .1.

30

SI 1.2 PyPI Experiment

Table SI 1.13. Classification of human vs bot downloads by package installer.

Installer Name Type

pip Human
Browser Bot

Bandersnatch Bot

setuptools Human
Nexus Human
requests Bot

devpi Bot

pdm Human
Homebrew Human
Artifactory Human
OS Human
Bazel Human
pex Human
conda Human
chaquopy Human

31

200,000

Treated
-------- Control

Treatment period
(June 3-8)

» 150,000

§e)

©

i)

[

=

[S)

o

o

< 100,000

a

Y

o

—

]

Q

£

=}

=Z 50,000

0
19 May 27 May 4 Jun 12 Jun 20 Jun 28 Jun 6 Jul 14 Jul 22 Jul

Figure SI 1.5. Mean PyPI downloads for Treated vs. Control in PyPI Experiment.
Same as Figure 3, except in means. The figure shows trends in median daily downloads for the
treated packages (n = 4,814) and control group packages (n = 19,102) for 1,458,876 package-day
observations. The shaded vertical bar indicates the treatment period. Downloads include only
human downloads (Table SI 1.13). Table SI 1.14 reports the estimates in the differences in means.

32

Table SI 1.14. PyPI Experiment Results - ITT estimates for medians and means.
) (2) ®3) 4)

Outcome variable is: PyPI downloads

Diff. in medians Diff. means
Jun 22 Full post period Jun 22 Full post period
Treatment group 83.0*** 86.7*** 26, 888.8 16,127.6
(0.9) (0.4) (52,957.6) (30,751.4)
[81.3 to 84.7] [85.8 to 87.5] [—76,911.6 to 130,689.1] [—44,147.1 to 76, 402.3]
< p=0.000 > < p=10.000 > <p=0.612 > < p=0.600 >
Linear trend 0.9*** 2,436.4***
(0.0) (551.9)
[0.9 to 1.0] [1,354.7 to 3,518.0]
< p=10.000 > < p=0.000 >
Treatment group x Linear trend —0.2% 748.0
(0.0) (1,558.3)
[-0.3to — 0.2] [—2,306.3 to 3, 802.3]
< p=10.000 > <p=0.631>
Constant 33.07* 18.17 79,9042 45,253.6"
(0.5) (0.3) (18,079.3) (10,235.3)
[32.1 t0 33.9] [17.5 to 18.7] [44,467.6 to 115, 340.8] [25,191.7 to 65, 315.5]
<p=10.000 > < p=10.000 > < p=0.000 > < p=0.000 >
Median/Mean of outcome 43 49 85,317 104,119
Package observations 23,916 23,916 23,916 23,916
Day observations 1 42 1 42
Package-day observations 23,916 1,004,472 23,916 1,004,472

Note: The table presents pre-to-post treatment changes in PyPI downloads. Column (1) reports differences
in means 14 days after intervention occurred (22 Jun 2023). Column (2) reports post-treatment differences in
means over the 42 days, allowing for heterogeneous treatment effects through a linear time trend. Columns
(1)—(2) correspond to Figure 3. Columns (3)—(4) do the same for differences in medians and correspond to
Figure SI 1.5. Standard errors are clustered by packages. Parentheses: standard errors. Square brackets: 95%
confidence intervals. Angle brackets: p-values. Significance levels: ***p < .001;*** p < .01;** p < .05;7 p < .1.

33

Table SI 1.15. PyPI Experiment Results - LATE estimates for means.
(1) (2)

Outcome variable is: PyPI downloads

Jun 22 Full post period
Received treatment 52,427.1 31,445.3
(103,217.8) (59,946.3)
[—149876.1 to 254, 730.3] [—86,047.3 to 148,937.9]
<p=0.612 > < p=0.600 >
Linear trend 2,436.4***
(551.8)
[1,354.8 to 3,518.0]
< p=0.000 >
Received treatment x Linear trend 1,458.4
(3,037.7)
[—4,495.4t0 7,412.2]
<p=0.631 >
Constant 79,904.2"** 45,253.6***
(18,078.4) (10,235.1)
[44,471.3 to 115,337.1] [25,193.2 to 65, 314.0]
< p=0.000 > < p=0.000 >
Mean of outcome 85,317 104,119
Package observations 23,916 23,916
Day observations 1 42
Package-day observations 23,916 1,004,472

Note: The table presents LATE estimates for mean downloads in the PyPI experiment. Compliers
(those who “Received treatment”) are defined as those receiving at least 50 downloads at the end of
the treatment window. LATE estimates are from instrumental variable regressions, instrumenting
compliers with the random treatment assignment. Column (1) reports differences in means 14
days after intervention occurred (22 Jun 2023). Column (2) reports post-treatment differences in
means over the 42 days, allowing for heterogeneous treatment effects through a linear time trend.
Columns (1)—(2) correspond to Figure 3. Columns (3)—(4) do the same for differences in medians
and correspond to Figure SI 1.5. Standard errors are clustered by packages. Parentheses: standard
errors. Square brackets: 95% confidence intervals. Angle brackets: p-values. Significance levels:
rp <001 p < .01;% p < .05 T p < 1.

34

SI 1.3 PyPI Observational Analysis

In this section, we present observational evidence using historical download data to un-
derstand the impact of human and bot downloads on human downloads. Using vector
auto-regressive (VAR) models, we find that past human downloads predict future human

downloads.

SI 1.3.1 Sample and Data

We started by retrieving the full enumeration of all Python packages available from the PyPI
repository. The index is extensive, with 458,274 packages at our retrieval time. We randomly
sampled fifty thousand packages to keep querying costs and data processing tractable. We
then queried daily downloads over a 3-month period (going back 91 days from our query date)
from BigQuery and successfully retrieved n= 40,565.!° We have the daily downloads split by
package installer for each package. We classify installers into bot versus human downloads
(Section 3.6). We filter our dataset to packages with at least 50 human downloads over the
three months, which gives us 13,481 packages and 1,226,771 package-day observations. So,
our final sample is of Python packages that have been downloaded somewhat consistently

over the last three months.

SI 1.3.2 Research Design

To estimate how past downloads predict future downloads, we estimate a VAR model for
each package to understand the non-experimental correlational evidence. Specifically, we
want to understand the extent to which past downloads can explain future downloads.

The VAR model of each package has two equations: one where human downloads at

Ohttps://warehouse.pypa.io/api-reference/bigquery-datasets.

html.

35

https://warehouse.pypa.io/api-reference/bigquery-datasets.html
https://warehouse.pypa.io/api-reference/bigquery-datasets.html

time ¢ is the outcome, and the other where bot downloads at time ¢ is the outcome. Both
outcomes are modeled as a function of their past values (e.g., human downloads) and the past
values of the other (e.g., bot downloads) up to a select number of temporal lag (¢ — p). The
maximum number of lags is three weeks (21 days) to allow downloads up to three weeks old
to affect present downloads. The Akaike Information Criterion then determines the number
of lags (p) for each package. We implement this using statsmodels (Seabold and Perktold,
2010). Some packages do not have a fitted model because of numerical instability or unit
roots. For packages that successfully converge with an optimal lag of at least a day (n =
6630), we further do a Granger causality test where the null is that past values of a time
series do not collectively predict future values. From this, we get n = 6620 p-values from
the Granger test (10 models fail to compute from numerical issues, Seabold and Perktold
(2010)). Having a p-value that rejects the null at conventional levels does not mean that

past downloads cause future downloads.

ST 1.3.3 Results

Figure SI 1.6 reports the collection of p-values from all the successful VAR runs for the four
versions of the Granger tests. The vertical dashed line indicates the 50th percentile in p-
values. Overall, we observe that only past human downloads can predict human downloads
(Figure SI 1.6a). Its 50th percentile in p-values is approximately .002, implying more than
50% of the packages’ VAR model have p-values small enough to reject the null hypothesis at
the 1 percent level that past human downloads do not predict human downloads. Specifically,
the percentile value for a p-value of .05 is the 69th percentile.

This same observation is not true for the three other versions (Figures SI 1.6a to SI
1.6d). Some packages have Granger tests where the p-values are small enough to reject the
null at conventional levels. However, they are in the minority, with the 50th percentiles in

p-values that much higher. The percentile values for these three groups, with a p-value of

36

60 1 60

1
1
50 50 :
|
40 40 |
> > 1
= = I

g 30 j«—50th percentile % 30 +—50th percentile
[a) (a) 1
20 20 :
|
10 10 | .
1

0 Illll-- X 0 T i M
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
P-values P-values

(a) Human — human (b) Human — bot
60 60
1 1
1 1
50 | 50 |
1 1
1 1
40 | 40 |
> ! > 1
= I = I

g 30 +—50th percentile g 30 +—50th percentile
[a) 1 (a) 1
20 i 20 |
| |
10 : 10 |
1 1

0 aiinil . J 0 !]
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
P-values P-values
(¢) Bot — human (d) Bot — bot

Figure SI 1.6. Distribution of P-values From Granger Causality Tests. The figure plots
the distribution of p-values for each of the four versions (by panels) of the Granger tests for 6,620
packages and 602,420 package days. All plots have the same scale. Each package’s downloads over
three months are first estimated in a VAR model, with human downloads and bot downloads as
the two outcomes. Estimated coefficients are then used to implement the Granger causality tests.
P-values are binned into 100 equal-width bins, each with a range of .01. The vertical dashed line
indicates the 50th percentile value in the p-values.

.05, are the 25th, 26th, and 26th percentiles.
In all, we conclude that past human downloads do not predict bot downloads, and

past bot downloads predict neither human nor bot downloads.

37

	Introduction
	Social Proof
	GitHub Experiment
	Sample and Randomization
	Treatment Conditions
	Attrition and Analytic Strategy
	Balance Tests
	Manipulation Check
	Outcome Measure: PyPI Downloads
	Results

	PyPI Experiment
	Design
	Results

	Discussion
	Supporting Information
	GitHub Experiment
	Balance tests: GitHub repositories characteristics
	Balance tests: PyPI package characteristics
	Balance tests: GitHub user characteristics
	Organic GitHub Starrers
	Manipulation check
	Differences in medians
	Differences in Means

	PyPI Experiment
	PyPI Observational Analysis
	Sample and Data
	Research Design
	Results

